中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知兩點,直線AM、BM相交于點M,且這兩條直線的斜率之積為.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)記點M的軌跡為曲線C,曲線C上在第一象限的點P的橫坐標為1,直線PE、PF與圓)相切于點E、F,又PE、PF與曲線C的另一交點分別為Q、R.
求△OQR的面積的最大值(其中點O為坐標原點).

(Ⅰ));(Ⅱ) .

解析試題分析:(Ⅰ)設點 的坐標為 則, ,化簡可得軌跡方程.
(Ⅱ)設出直線PE、PF的點斜式方程,分別求出它們與圓)相切條件下與曲線C的另一交個交點Q、R.的坐標,寫出直線的方程,點到直線的距離公式可求的底邊上的高.進而得出面積的表達式,再探索用基本不等式求該式最值的方法.
試題解析:(Ⅰ)設點       2分
整理得點M所在的曲線C的方程:)        3分

(Ⅱ)由題意可得點P()             4分
因為圓的圓心為(1,0),
所以直線PE與直線PF的斜率互為相反數           5分
設直線PE的方程為
與橢圓方程聯立消去,得:
,         6分
由于1是方程的一個解,
所以方程的另一解為            7分
同理                        8分
故直線RQ的斜率為
=    9分
把直線RQ的方程代入橢圓方程,消去整理得
所以       10分
原點O到直線RQ的距離為              11分
   12分
考點:1、動點軌跡方程的求法;2、直線與圓、圓錐曲線的位置關系;3、基本不等式的應用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,已知點是動點,且的三邊所在直線的斜率滿足
(1)求點的軌跡的方程;
(2)若是軌跡上異于點的一個點,且,直線交于點,問:是否存在點,使得的面積滿足?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,已知點,圓是以為圓心,半徑為的圓,點是圓上任意一點,線段的垂直平分線和半徑所在的直線交于點.
(Ⅰ)當點在圓上運動時,求點的軌跡方程
(Ⅱ)已知是曲線上的兩點,若曲線上存在點,滿足為坐標原點),求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓C:的一個焦點是(1,0),兩個焦點與短軸的一個端點構成等邊三角形.
(1)求橢圓C的方程;
(2)過點Q(4,0)且不與坐標軸垂直的直線l交橢圓C于A、B兩點,設點A關于x軸的
對稱點為A1.求證:直線A1B過x軸上一定點,并求出此定點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的離心率為且與雙曲線有共同焦點.
(1)求橢圓的方程;
(2)在橢圓落在第一象限的圖像上任取一點作的切線,求與坐標軸圍成的三角形的面積的最小值;
(3)設橢圓的左、右頂點分別為,過橢圓上的一點軸的垂線交軸于點,若點滿足,連結于點,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的左、右焦點分別為為原點.
(1)如圖1,點為橢圓上的一點,的中點,且,求點軸的距離;

(2)如圖2,直線與橢圓相交于兩點,若在橢圓上存在點,使四邊形為平行四邊形,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設O為坐標原點,點A,B分別在橢圓上, ,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上,長軸長為,且點在橢圓上.
(1)求橢圓的方程;
(2)設是橢圓長軸上的一個動點,過作方向向量的直線交橢圓兩點,求證:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設橢圓E:=1()過點M(2,), N(,1),為坐標原點
(I)求橢圓E的方程;
(II)是否存在以原點為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程;若不存在,說明理由。

查看答案和解析>>

同步練習冊答案