已知函數(shù)![]()
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的圖象在點(diǎn)
處的切線方程;
(Ⅱ)討論函數(shù)
的單調(diào)性;
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知函數(shù)
(
).
(1)試討論
在區(qū)間
上的單調(diào)性;
(2)當(dāng)
時(shí),曲線
上總存在相異兩點(diǎn)
,
,使得曲線
在點(diǎn)
,
處的切線互相平行,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),如果函數(shù)
僅有一個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍;
(Ⅱ)當(dāng)
時(shí),試比較
與1的大小;
(Ⅲ)求證:![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分15分)已知函數(shù)
(
)
(Ⅰ)討論
的單調(diào)性;
(Ⅱ)當(dāng)
時(shí),設(shè)
,若存在
,![]()
,使
,
求實(shí)數(shù)
的取值范圍。
為自然對(duì)數(shù)的底數(shù),![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,其中
為正實(shí)數(shù),
2.7182……
(1)當(dāng)
時(shí),求
在點(diǎn)
處的切線方程。
(2)是否存在非零實(shí)數(shù)
,使
恒成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
.
(1)討論函數(shù)
在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)
在
處取得極值,對(duì)![]()
,
恒成立,
求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
在
與
時(shí)都取得極值.
(1)求
的值及函數(shù)
的單調(diào)區(qū)間;
(2)若對(duì)
,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,![]()
(1) 設(shè)
(其中
是
的導(dǎo)函數(shù)),求
的最大值;
(2) 證明: 當(dāng)
時(shí),求證:
;
(3) 設(shè)
,當(dāng)
時(shí),不等式
恒成立,求
的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分10分)一艘輪船在航行中的燃料費(fèi)和它的速度的立方成正比,已知在速度為每小時(shí)10公里時(shí)的燃料費(fèi)是每小時(shí)6元,而其他與速度無(wú)關(guān)的費(fèi)用是每小時(shí)96元,問(wèn)此輪船以何種速度航行時(shí),能使行駛每公里的費(fèi)用總和最小?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com