在平面直角坐標系
中,點
為動點,
分別為橢圓
的左右焦點.已知△
為等腰三角形.(1)求橢圓的離心率
;(2)設直線
與橢圓相交于
兩點,
是直線
上的點,滿足
,求點
的軌跡方程.![]()
(1)
; (2)
.
解析試題分析:(1)設出焦點
,由條件
為等腰三角形,分析出
,代入兩點間距離公式,利用
消去
,得a、c的關系,得出e的值;(2)由
得
,
,推出橢圓方程
,由
即
,
,得
,得
,與橢圓:
聯立得交點A,B的坐標,再表示
,
代入
中,整理得點
的軌跡方程.
試題解析:(1)設
,
由題意,可得
,即
, 2分
整理得
,得
(舍)或
,所以
. 4分
(2)由(1)知
,
,可得橢圓方程為
.
直線
方程為
5分
兩點的坐標滿足方程組
,消去y并整理得
6分
解得
得方程組的解
,
8分
不妨設
,
,設
的坐標為![]()
則
,
, 10分
由
得
.
于是
,
11分
由
得
,
化簡得
, 13分
將
代入
得
,
由
得
.因此,點
的軌跡方程是
. 14分
考點:1.兩點間距離公式;2.斜率公式.
科目:高中數學 來源: 題型:解答題
拋物線
與直線
相切,
是拋物線上兩個動點,
為拋物線的焦點,
的垂直平分線
與
軸交于點
,且
.
(1)求
的值;
(2)求點
的坐標;
(3)求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知動點
與定點
的距離和它到直線
的距離之比是常數
,記
的軌跡為曲線
.
(I)求曲線
的方程;
(II)設直線
與曲線
交于
兩點,點
關于
軸的對稱點為
,試問:當
變化時,直線
與
軸是否交于一個定點?若是,請寫出定點的坐標,并證明你的結論;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
經過點
且與直線
相切的動圓的圓心軌跡為
.點
、
在軌跡
上,且關于
軸對稱,過線段
(兩端點除外)上的任意一點作直線
,使直線
與軌跡
在點
處的切線平行,設直線
與軌跡
交于點
、
.
(1)求軌跡
的方程;
(2)證明:
;
(3)若點
到直線
的距離等于
,且△
的面積為20,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
是橢圓
的右焦點,圓
與
軸交于
兩點,
是橢圓
與圓
的一個交點,且
.
(Ⅰ)求橢圓
的離心率;
(Ⅱ)過點
與圓
相切的直線
與
的另一交點為
,且
的面積等于
,求橢圓
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的兩個焦點分別為
,且
,點
在橢圓上,且
的周長為6.
(I)求橢圓
的方程;
(II)若點
的坐標為
,不過原點
的直線與橢圓
相交于
兩點,設線段
的中點為
,點
到直線的距離為
,且
三點共線.求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標平面內,y軸右側的一動點P到點
的距離比它到
軸的距離大![]()
(Ⅰ)求動點
的軌跡
的方程;
(Ⅱ)設
為曲線
上的一個動點,點
,
在
軸上,若
為圓
的外切三角形,求
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
的頂點為原點,其焦點
到直線
:
的距離為
.設
為直線
上的點,過點
作拋物線
的兩條切線
,其中
為切點.
(Ⅰ) 求拋物線
的方程;
(Ⅱ) 當點
為直線
上的定點時,求直線
的方程;
(Ⅲ) 當點
在直線
上移動時,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com