在直角坐標平面內(nèi),y軸右側(cè)的一動點P到點
的距離比它到
軸的距離大![]()
(Ⅰ)求動點
的軌跡
的方程;
(Ⅱ)設
為曲線
上的一個動點,點
,
在
軸上,若
為圓
的外切三角形,求
面積的最小值.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓
的離心率為
,以原點為圓心,橢圓的短半軸為半徑的圓與直線
相切,直線
與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;(2)求
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓
的離心率為
,且經(jīng)過點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)如果過點
的直線與橢圓交于
兩點(
點與
點不重合),
①求
的值;
②當
為等腰直角三角形時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系
中,點
為動點,
分別為橢圓
的左右焦點.已知△
為等腰三角形.(1)求橢圓的離心率
;(2)設直線
與橢圓相交于
兩點,
是直線
上的點,滿足
,求點
的軌跡方程.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知△
的兩個頂點
的坐標分別是
,且
所在直線的斜率之積等于
.
(Ⅰ)求頂點
的軌跡
的方程,并判斷軌跡
為何種圓錐曲線;
(Ⅱ)當
時,過點
的直線
交曲線
于
兩點,設點
關(guān)于
軸的對稱
點為
(
不重合) 試問:直線
與
軸的交點是否是定點?若是,求出定點,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年
月
日
時
分
秒“嫦娥二號”探月衛(wèi)星由長征三號丙運載火箭送入近地點高度約
公里、遠地點高度約
萬公里的直接奔月橢圓(地球球心
為一個焦點)軌道Ⅰ飛行。當衛(wèi)星到達月球附近的特定位置時,實施近月制動及軌道調(diào)整,衛(wèi)星變軌進入遠月面
公里、近月面
公里(月球球心
為一個焦點)的橢圓軌道Ⅱ繞月飛行,之后衛(wèi)星再次擇機變軌進入以
為圓心、距月面
公里的圓形軌道Ⅲ繞月飛行,并開展相關(guān)技術(shù)試驗和科學探測。已知地球半徑約為
公里,月球半徑約為
公里。
(Ⅰ)比較橢圓軌道Ⅰ與橢圓軌道Ⅱ的離心率的大小;
(Ⅱ)以
為右焦點,求橢圓軌道Ⅱ的標準方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,
為半圓,
為半圓直徑,
為半圓圓心,且
,
為線段
的中點,已知
,曲線
過
點,動點
在曲線
上運動且保持
的值不變.
(I)建立適當?shù)钠矫嬷苯亲鴺讼担笄
的方程;
(II)過點
的直線
與曲線
交于
兩點,與
所在直線交于
點,
,
證明:
為定值.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示:已知過拋物線
的焦點F的直線
與拋物線相交于A,B兩點。![]()
(1)求證:以AF為直徑的圓與x軸相切;
(2)設拋物線
在A,B兩點處的切線的交點為M,若點M的橫坐標為2,求△ABM的外接圓方程;
(3)設過拋物線
焦點F的直線
與橢圓
的交點為C、D,是否存在直線
使得
,若存在,求出直線
的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓
(a>b>0)的焦距為4,且與橢圓
有相同的離心率,斜率為k的直線l經(jīng)過點M(0,1),與橢圓C交于不同兩點A、B.
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內(nèi)時,求k的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com