已知橢圓C:

的離心率為

,橢圓C上任意一點到橢圓兩焦點的距離之和為6.
(1)求橢圓C的方程;
(2)設(shè)直線

與橢圓C交于A,B兩點,點P(0,1),且滿足PA=PB,求直線

的方程.
解 (1)由已知2a=6,=,解得a=3,c=,所以b2=a2-c2=3,故橢圓C的方程為+=1。
(2)設(shè)A(x1,y1),B(x2,y2),則AB的中點為E.
由得(1+3k2)x2-12kx+3=0,∵直線與橢圓有兩個不同的交點,
∴Δ=144k2-12(1+3k2)>0,解得k2>.且x1+x2=,x1x2=.
而y1+y2=k(x1+x2)-4=k·-4=-,∴E點坐標為.
∵PA=PB,∴PE⊥AB,kPE·kAB=-1.∴·k=-1.解得k=±1,滿足k2>,
∴直線l的方程為x-y-2=0或x+y+2=0.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)

、

是橢圓

上的兩點,點

是線段

的中點,線段

的垂直平分線與橢圓相交于

、

兩點.
(Ⅰ)求直線

的方程;
(Ⅱ)求以線段

的中點

為圓心且與直線

相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分15分)已知橢圓

:

,設(shè)該橢圓上的點到左焦點


的最大距離為

,到右頂點


的最大距離為

.
(Ⅰ) 若

,

,求橢圓

的方程;
(Ⅱ) 設(shè)該橢圓上的點到上頂點


的最大距離為

,求證:

.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知定直線l與平面a成60°角,點P是平面a內(nèi)的一動點,且點p到直線l的距離為3,則動點P的軌跡是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
離心率

,一條準線為

的橢圓的標準方程是________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓

:

的離心率為

,且過點

.
(Ⅰ)求橢圓

的標準方程;
(Ⅱ)垂直于坐標軸的直線

與橢圓

相交于

、

兩點,若以

為直徑的圓

經(jīng)過坐標原點.證明:圓

的半徑為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分10分)設(shè)過點

的直線

與過點

的直線

相交于點M,
且

與

的斜率

,

的乘積為定值

,求點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)F
1、F
2為曲線C
1:

+

=1的焦點,P是曲線

:

與C
1的一個交點,則△PF
1F
2的面積為_____________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知

是兩個正數(shù)

的等比中項,則圓錐曲線

的離心率為 ( )
查看答案和解析>>