(本題滿分10分)設過點

的直線

與過點

的直線

相交于點M,
且

與

的斜率

,

的乘積為定值

,求點M的軌跡方程.
M軌跡方程為

. ……10分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C:

的離心率為

,橢圓C上任意一點到橢圓兩焦點的距離之和為6.
(1)求橢圓C的方程;
(2)設直線

與橢圓C交于A,B兩點,點P(0,1),且滿足PA=PB,求直線

的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
設橢圓
C:

的左、右焦點分別為
F1、
F2,
A是橢圓C上的一點,

,坐標原點O到直線
AF1的距離為

.
(Ⅰ)求橢圓
C的方程;
(Ⅱ)設
Q是橢圓
C上的一點,過點
Q的直線
l 交
x軸于點

,交
y軸于點
M,若

,求直線
l 的斜率.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知平面直角坐標系中點F(1,0)和直線

,動圓M過點F且與直線

相切。
(1)求M的軌跡L的方程;
(2)過點F作斜率為1的直線

交曲線L于A、B兩點,求|AB|的值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設橢圓

恒過定點

,則橢圓的中心到準線的距離的
最小值
▲ .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知

+

=1的焦點F
1、F
2,在直線
l:
x+y-6=0上找一點M,求以F
1、F
2為焦點,通過點M且長軸最短的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知點

分別為橢圓

的左、右焦點,點

為橢圓上任意一點,

到焦點

的距離的最大值為

,且

的最大面積為

.
(I)求橢圓

的方程。
(II)點

的坐標為

,過點

且斜率為

的直線

與橢圓

相交于

兩點。對于任意的

是否為定值?若是求出這個定值;若不是說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓

的離心率為( )
查看答案和解析>>