中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知為常數,且,函數 
是自然對數的底數).
(1)求實數的值;
(2)求函數的單調區間;
(3)當時,是否同時存在實數),使得對每一個,直線與曲線都有公共點?若存在,求出最小的實數和最大的實數;若不存在,說明理由.
(1);(2)當時,的單調增區間為,單調減區間為,當時,的單調增區間為,單調減區間為;(3) 當時,存在實數,使得對每一個,直線與曲線都有公共點,可得.

試題分析:(1) 由可解得的值;(2)對函數求導可得,對進行討論,解分別可得單調遞增與遞減區間;(3)當時,,求出導數判斷的變化情況,得在區間內值域為,假設存在題目中要求的點,那么每一個,直線與曲線都沒有公共點.
解: (1)由,得;             2分
(2)由(Ⅰ),.定義域為.      .3分
從而,                      ..4分
因為,所以
時,由,由;5分
時,由,由;6分
因而, 當時,的單調增區間為,單調減區間為, ..7分
時,的單調增區間為,單調減區間為.     .8分
(3)當時,.令,則
在區間內變化時,的變化情況如下表:







 



 


單調遞減
極小值
單調遞增

   10分
因為,所以在區間內值域為.  .11分
由此可得,
,則對每一個,直線與曲線都有公共點,  .12分
并且對每一個,直線與曲線都沒有公共點.  .13分
綜合以上,當時,存在實數,使得對每一個,直線與曲線都有公共點.  .14分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

記函數fn(x)=a·xn-1(a∈R,n∈N*)的導函數為f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)設函數gn(x)=fn(x)-n2ln x,試問:是否存在正整數n使得函數gn(x)有且只有一個零點?若存在,請求出所有n的值;若不存在,請說明理由;
(3)若實數x0和m(m>0且m≠1)滿足,試比較x0與m的大小,并加以證明.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知f(x)是可導的函數,且
lim
x→0
f(x+2)-f(2)
2x
=-2
,則曲線y=f(x)在點(2,2)處的切線的一般式方程是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設f(x),g(x)在[a,b]上可導,且f′(x)>g′(x),則當a<x<b時,有(  )
A.f(x)>g(x)
B.f(x)<g(x)
C.f(x)+g(a)>g(x)+f(a)
D.f(x)+g(b)>g(x)+f(b)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

任何一個三次函數都有對稱中心.請你探究函數,猜想它的對稱中心為_________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)求函數在區間上的值域;
(2)是否存在實數a,對任意給定的,在區間上都存在兩個不同的,使得成立.若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若曲線上點處的切線平行于直線,則點的坐標是________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數是它的導函數,則            。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的圖象上一點處的切線的斜率為(  )
A.-B.C.-D.-

查看答案和解析>>

同步練習冊答案