(本題滿分13分)
函數(shù)
.
(1)求證函數(shù)
在區(qū)間
上存在唯一的極值點(diǎn),并用二分法求函數(shù)取得極值時相應(yīng)
的近似值(誤差不超過
);(參考數(shù)據(jù)
,
,
)
(2)當(dāng)
時,若關(guān)于
的不等式
恒成立,試求實(shí)數(shù)
的取值范圍.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)![]()
(I)討論
的單調(diào)性;
(II)若
有兩個極值點(diǎn)
和
,記過點(diǎn)
的直線的斜率為
,問:是否存在
,使得
?若存在,求出
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)若曲線
在點(diǎn)
處的切線的傾斜角為
,求實(shí)數(shù)
的值;
(2)若函數(shù)
在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)實(shí)數(shù)
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知
.
(Ⅰ)若
在
上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)常數(shù)
時,設(shè)
,求
在
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù)
,在點(diǎn)
處的切
線方程是
(e為自然對數(shù)的底)。
(1)求實(shí)數(shù)
的值及
的解析式;
(2)若
是正數(shù),設(shè)
,求
的最小值;
(3)若關(guān)
于x的不等式
對一切
恒成立,求實(shí)數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)已知函數(shù)![]()
(Ⅰ)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
在
是單調(diào)函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
在點(diǎn)
處的切線方程為
.
(I)求
的表達(dá)式;
(Ⅱ)
若
滿足
恒成立,則稱
是
的一個“上界函數(shù)”,如果函數(shù)
為
(
R)的一個“上界函數(shù)”,求t的取值范圍;
(Ⅲ)當(dāng)
時,討論
在區(qū)間(0,2)上極值點(diǎn)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)已知定義在
上的函數(shù)
,其中
為常數(shù).
(1)若
是函數(shù)
的一個極值點(diǎn),求
的值;
(2)若函數(shù)
在區(qū)
間
上是增函數(shù),求
的取值范圍;
(3)若函數(shù)
,在
處取得最大值,求正數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)某投資公司投資甲、乙兩個項(xiàng)目所獲得的利潤分別是P(億
元)和Q(億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗(yàn)公式P=
,Q=
t.今該公司將5
億元投資這兩個項(xiàng)目,其中對甲項(xiàng)目投資x(億元),投資這兩個項(xiàng)目所獲得的總利潤為y(億
元).求:(1)y關(guān)于x的函數(shù)表達(dá)式;
(2)總利潤的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com