中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數,().
(1)求函數的極值;
(2)已知,函數,判斷并證明的單調性;
(3)設,試比較,并加以證明.

(1)有極小值無極大值.(2)上是增函數.
(3). 

解析試題分析:(1),令,得
時,是減函數;
時,是增函數.
∴當時,有極小值無極大值.      4分
(2)
==
由(1)知上是增函數,
時,

,即上是增函數.      10分
(3),由(2)知,上是增函數,

得,.      16分
考點:本題考查了導數的運用
點評:導數本身是個解決問題的工具,是高考必考內容之一,高考往往結合函數甚至是實際問題考查導數的應用,求單調、最值、完成證明等,請注意歸納常規方法和常見注意點

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求的最小值;
(2)若直線對任意的都不是曲線的切線,求的取值范圍;
(3)設,求的最大值的解析式

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數時都取得極值
(1)求的值與函數的單調區間
(2)若對,不等式恒成立,求c的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求的單調區間;
(2)當時,判斷的大小,并說明理由;
(3)求證:當時,關于的方程:在區間上總有兩個不同的解.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求的極小值;
(2)若直線對任意的都不是曲線的切線,求的取值范圍;
(3)設,求的最大值的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求曲線在點處的切線方程;
(2)對任意在區間上是增函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)(I)求函數圖象上的點處的切線方程;
(Ⅱ)已知函數,其中是自然對數的底數,
對于任意的恒成立,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(I)當時,討論函數的單調性:
(Ⅱ)若函數的圖像上存在不同兩點,設線段的中點為,使得在點處的切線與直線平行或重合,則說函數是“中值平衡函數”,切線叫做函數的“中值平衡切線”.
試判斷函數是否是“中值平衡函數”?若是,判斷函數的“中值平衡切線”的條數;若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若函數f(x)=ax3-bx+4,當x=2時,函數f(x)有極值-.
(1)求函數的解析式.
(2)若方程f(x)=k有3個不同的根,求實數k的取值范圍.

查看答案和解析>>

同步練習冊答案