已知函數(shù)
.
(1) 當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(2) 當(dāng)
時,函數(shù)
圖象上的點都在
所表示的平面區(qū)域內(nèi),求實數(shù)
的取值范圍.
(1) 函數(shù)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
;(2)
.
解析試題分析:本小題主要通過函數(shù)與導(dǎo)數(shù)綜合應(yīng)用問題,具體涉及到用導(dǎo)數(shù)來研究函數(shù)的單調(diào)性等知識內(nèi)容,考查考生的運算求解能力,推理論證能力,其中重點對導(dǎo)數(shù)對函數(shù)的描述進(jìn)行考查,本題是一道難度較高且綜合性較強(qiáng)的壓軸題,也是一道關(guān)于數(shù)列拆分問題的典型例題,對今后此類問題的求解有很好的導(dǎo)向作用.(1)代入
的值,明確函數(shù)解析式,并注明函數(shù)的定義域,然后利用求導(dǎo)研究函數(shù)的單調(diào)性;(2)利用構(gòu)造函數(shù)思想,構(gòu)造
,然后利用轉(zhuǎn)化思想,將問題轉(zhuǎn)化為只需
,下面通過對
進(jìn)行分類討論進(jìn)行研究函數(shù)的單調(diào)性,明確最值進(jìn)而確定
的取值范圍.
試題解析:(1) 當(dāng)
時,![]()
,![]()
,
由
解得
,由
解得
.
故函數(shù)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
. (6分)
(2) 因函數(shù)
圖象上的點都在
所表示的平面區(qū)域內(nèi),
則當(dāng)
時,不等式
恒成立,即
恒成立,、
設(shè)
(
),只需
即可.
由![]()
,
(i) 當(dāng)
時,
,
當(dāng)
時,
,函數(shù)
在
上單調(diào)遞減,故
成立.
(ii) 當(dāng)
時,由
,因
,所以
,
① 若
,即
時,在區(qū)間
上,
,
則函數(shù)
在
上單調(diào)遞增,
在
上無最大值,當(dāng)
時,
,此時不滿足條件;
② 若
,即
時,函數(shù)
在
上單調(diào)遞減,
在區(qū)間
上單調(diào)遞增,同樣
在
上無最大值,當(dāng)
時,
,不滿足條件.
(iii) 當(dāng)
時,由
,∵
,∴
,
∴
,故函數(shù)
在
上單調(diào)遞減,故
成立.
綜上所述,實數(shù)a的取值范圍是
. (12分)
考點:(1)函數(shù)的單調(diào)區(qū)間;(2)導(dǎo)數(shù)的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)m為實數(shù),函數(shù)f(x)=-
+2x+m,x∈R
(Ⅰ)求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)m≤1且x>0時,
>2
+2mx+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)若
在
處的切線垂直于直線
,求該點的切線方程,并求此時函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
對任意的
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
為函數(shù)
圖象上一點,O為坐標(biāo)原點,記直線
的斜率
.
(1)若函數(shù)
在區(qū)間![]()
上存在極值,求實數(shù)m的取值范圍;
(2)當(dāng)
時,不等式
恒成立,求實數(shù)
的取值范圍;
(3)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
的導(dǎo)函數(shù)
,且
,設(shè)
,
且
.
(Ⅰ)討論
在區(qū)間
上的單調(diào)性;
(Ⅱ)求證:
;
(Ⅲ)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如下圖,過曲線
:
上一點
作曲線
的切線
交
軸于點
,又過
作
軸的垂線交曲線
于點
,然后再過
作曲線
的切線
交
軸于點
,又過
作
軸的垂線交曲線
于點
,
,以此類推,過點
的切線
與
軸相交于點
,再過點
作
軸的垂線交曲線
于點
(
N
).
(1) 求
、
及數(shù)列
的通項公式;(2) 設(shè)曲線
與切線
及直線
所圍成的圖形面積為
,求
的表達(dá)式; (3) 在滿足(2)的條件下, 若數(shù)列
的前
項和為
,求證:![]()
N
.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(I)若a=-1,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)
的圖象在點(2,f(2))處的切線的傾斜角為45o,對于任意的t
[1,2],函數(shù)
是
的導(dǎo)函數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)求證:![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com