中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

如下圖,過曲線上一點作曲線的切線軸于點,又過軸的垂線交曲線于點,然后再過作曲線的切線軸于點,又過軸的垂線交曲線于點,以此類推,過點的切線 與軸相交于點,再過點軸的垂線交曲線于點N).
(1) 求及數列的通項公式;(2) 設曲線與切線及直線所圍成的圖形面積為,求的表達式; (3) 在滿足(2)的條件下, 若數列的前項和為,求證:N.

(1) ;(2) ;(3)見解析.

解析試題分析:(1)利用導數求直線切線和切線的方程,從而易得的值,再得直線的方程,知點在直線上,所以,既得通項公式;(2)觀察圖形利用定積分求表達式;(3)分別求得表達式,再用數學歸納法、二項式定理及導數的方法證明即可.
試題解析:(1) 由,設直線的斜率為,則.
∴直線的方程為.令,得,                       1分
, ∴. ∴.
∴直線的方程為.令,得.              2分
一般地,直線的方程為
由于點在直線上,∴.                        3分
∴數列是首項為,公差為的等差數列.∴.              4分
(2)
.                                                6分
(3)證明: ,  8分
.
要證明,只要證明,即只要證明.       9分
證法1:(數學歸納法)
①當時,顯然成立;
②假設時,成立,則當時,


時,也成立,由①②知不等式對一切都成立.          14分
證法2:
.
所以不等式對一切都成立.                14分
證法3:令,則

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數f(x)=aex,g(x)=lnx-lna,其中a為常數,e=2.718…,且函數y=f(x)和y=g(x)的圖像在它們與坐標軸交點處的切線互相平行.
(1)求常數a的值;(2)若存在x使不等式>成立,求實數m的取值范圍;
(3)對于函數y=f(x)和y=g(x)公共定義域內的任意實數x0,我們把|f(x0)-g(x0)|的值稱為兩函數在x0處的偏差.求證:函數y=f(x)和y=g(x)在其公共定義域內的所有偏差都大于2.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1) 當時,求函數的單調區間;
(2) 當時,函數圖象上的點都在所表示的平面區域內,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知.
(1)求的極值,并證明:若
(2)設,且,證明:
,由上述結論猜想一個一般性結論(不需要證明);
(3)證明:若,則.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

函數
(1)當時,對任意R,存在R,使,求實數的取值范圍;
(2)若對任意恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是函數的兩個極值點.
(1)若,求函數的解析式;
(2)若,求實數的最大值;
(3)設函數,若,且,求函數內的最小值.(用表示)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數(其中).
(Ⅰ) 當時,求函數的單調區間;
(Ⅱ) 當時,求函數上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為自然對數的底數)
(Ⅰ)若曲線在點處的切線平行于軸,求的值;
(Ⅱ)求函數的極值;
(Ⅲ)當時,若直線與曲線沒有公共點,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,當時,取得極大值;當時,取得極小值.
的值;
處的切線方程.

查看答案和解析>>