中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知為橢圓的左右焦點,點為其上一點,且有
.
(1)求橢圓的標準方程;
(2)過的直線與橢圓交于兩點,過平行的直線與橢圓交于兩點,求四邊形的面積的最大值.

(1);(2).

解析試題分析:(1)設橢圓的標準方程為,先利用橢圓定義得到的值并求出的值,然后將點的坐標代入橢圓方程求出的值,最終求出橢圓的方程;(2)根據平行四邊形的幾何性質得到,即先求出的面積的最大值,先設直線的方程為,且,將此直線的方程與橢圓的方程聯立,結合韋達定理將的面積表示成只含的表達式,并利用換元法將代數式進行化簡,最后利用基本不等式并結合雙勾函數的單調性來求出面積的最大值,從而確定平行四邊形面積的最大值.
(1)設橢圓的標準方程為
由已知
又點在橢圓上, 
橢圓的標準方程為
(2)由題意可知,四邊形為平行四邊形 
設直線的方程為,且




,則
上單調遞增,
的最大值為
所以的最大值為.
考點:1.橢圓的定義與方程;2.直線與橢圓的位置關系;3.韋達定理;4.基本不等式

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知圓的圓心在坐標原點,且恰好與直線相切,設點A為圓上一動點,軸于點,且動點滿足,設動點的軌跡為曲線
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點,求△OBD面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓C:的離心率為,短軸一個端點到右焦點的距離為
(1)求橢圓C的方程;
(2)設直線與橢圓C交于A、B兩點,以弦為直徑的圓過坐標原點,試探討點到直線的距離是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知橢圓,直線的方程為,過右焦點的直線與橢圓交于異于左頂點兩點,直線交直線分別于點
(1)當時,求此時直線的方程;
(2)試問兩點的縱坐標之積是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設橢圓C1=1(a>b>0)的左、右焦點分別為為恰是拋物線C2的焦點,點M為C1與C2在第一象限的交點,且|MF2|=
(1)求C1的方程;
(2)平面上的點N滿足,直線l∥MN,且與C1交于A,B兩點,若,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的離心率為,其短軸兩端點為.
(1)求橢圓的方程;
(2)若是橢圓上關于軸對稱的兩個不同點,直線軸分別交于點.判斷以為直徑的圓是否過點,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,設拋物線的焦點為,準線為,過準線上一點且斜率為的直線交拋物線兩點,線段的中點為,直線交拋物線兩點.
(1)求拋物線的方程及的取值范圍;
(2)是否存在值,使點是線段的中點?若存在,求出值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的兩個焦點分別為,離心率.
(1)求橢圓的方程;
(2)設直線)與橢圓交于兩點,線段 的垂直平分線交軸于點,當變化時,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知平面內一動點到兩個定點的距離之和為,線段的長為.

(1)求動點的軌跡的方程;
(2)過點作直線與軌跡交于兩點,且點在線段的上方,
線段的垂直平分線為.
①求的面積的最大值;
②軌跡上是否存在除外的兩點關于直線對稱,請說明理由.

查看答案和解析>>

同步練習冊答案