中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=
4cosπx
(4x2+4x+5)(4x2-4x+5)
,對于下列命題:
①函數以f(x)不是周期函數;
②函數f(x)是偶函數;
③對任意x∈R,f(x)滿足|f(x)|<
1
4
,其中真命題是
①②③
①②③
分析:①由于二次函數不是周期函數,則f(x)不是周期函數
②f(-x)=
4cosπ(-x)
(4x2-4x+5)(4x2+4x+5)
=f(x),即f(x)是偶函數
③由于4x2-4x+5=4(x-
1
2
)
2
+4≥4
4x2+4x+5=4(x+
1
2
)
2
+4≥4
,|4cosπx|≤4,可判斷
解答:解:∵f(x)=
4cosπx
(4x2+4x+5)(4x2-4x+5)

①由于二次函數不是周期函數,則f(x)不是周期函數,①正確
②f(-x)=
4cosπ(-x)
(4x2-4x+5)(4x2+4x+5)
=f(x),即f(x)是偶函數,②正確
③由于4x2-4x+5=4(x-
1
2
)
2
+4≥4
4x2+4x+5=4(x+
1
2
)
2
+4≥4
,|4cosπx|≤4
∴|f(x)|=
|4cosπx|
(4x2+4x+5)(4x2-4x+5)
4
4×4
=
1
4
③正確
故答案為:①②③
點評:本題主要考查了函數的周期性、奇偶性及函數值域的求解,屬于函數知識的綜合應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
4(a-3)x+a+
1
2
(x<0)
ax,(x≥0)
,若函數f(x)的圖象經過點(3,
1
8
),則a=
 
;若函數f(x)滿足對任意x1≠x2
f(x1)-f(x2)
x1-x2
<0
都有成立,那么實數a的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
4-x2
|x-3|-3
,則它是(  )
A、奇函數B、偶函數
C、既奇又偶函數D、非奇非偶函數

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)

(1)求f(a2+1)(a∈R),f(f(3))的值;
(2)當-4≤x<3時,求f(x)取值的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
4•2x+2
2x+1
+x•cosx (-1≤x≤1)
,且f(x)存在最大值M和最小值N,則M、N一定滿足(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)

(1)畫出函數f(x)圖象;
(2)求f(a2+1)(a∈R),f(f(3))的值;
(3)當-4≤x<3時,求f(x)取值的集合.

查看答案和解析>>

同步練習冊答案