如圖是多面體
和它的三視圖.![]()
(1)若點(diǎn)
是線(xiàn)段
上的一點(diǎn),且
,求證:
;
(2)求二面角
的余弦值.
(1)證明見(jiàn)解析;
(2)![]()
解析試題分析:(1)利用已知的線(xiàn)面垂直關(guān)系建立空間直角坐標(biāo)系,準(zhǔn)確寫(xiě)出相關(guān)點(diǎn)的坐標(biāo),從而將幾何證明轉(zhuǎn)化為向量運(yùn)算.其中靈活建系是解題的關(guān)鍵.(2)證明線(xiàn)面垂直,需證線(xiàn)線(xiàn)垂直,只需要證明直線(xiàn)的方向向量垂直;(3)把向量夾角的余弦值轉(zhuǎn)化為兩平面法向量夾角的余弦值;(4)空間向量將空間位置關(guān)系轉(zhuǎn)化為向量運(yùn)算,應(yīng)用的核心是要充分認(rèn)識(shí)形體特征,建立恰當(dāng)?shù)淖鴺?biāo)系,實(shí)施幾何問(wèn)題代數(shù)化.同時(shí)注意兩點(diǎn):一是正確寫(xiě)出點(diǎn)、向量的坐標(biāo),準(zhǔn)確運(yùn)算;二是空間位置關(guān)系中判定定理與性質(zhì)定理?xiàng)l件要完備.
試題解析:解:(1)由題意知AA1,AB,AC兩兩垂直,建立如圖所示的空間直角坐標(biāo)系,則A(0,0,0),A1(0,0,2),B(-2,0,0),C(0,-2,0),C1(-1,-1,2),則
=(-1,1,2),
=(-1,-1,0),
=(0,-2,-2).(1分)![]()
設(shè)E(x,y,z),則
=(x,y+2,z),
=(-1-x,-1-y,2-z).(3分)![]()
![]()
![]()
=2
,得E(![]()
![]()
=![]()
設(shè)平面C1A1C的法向量為m=(x,y,z),則由
,
得
,取x=1,則y=-1,z=1.故m=(1,-1,1),![]()
=
,
BE⊥平面A1CC1.(6分)
(2)由(1)知,平面C1A1C的法向量為m=(1,-1,1)
而平面A1CA的一個(gè)法向量為n=(1,0,0),則cos〈m,n〉=
=
=
,故二面角
的余弦值
.(12分)
考點(diǎn):利用空間向量證明垂直和夾角問(wèn)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐
的底面
為一直角梯形,側(cè)面PAD是等邊三角形,其中
,
,平面
底面
,
是
的中點(diǎn).![]()
(1)求證:
//平面
;
(2)求證:![]()
;
(3)求三棱錐
的體積
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中點(diǎn)O為球心、BD為直徑的球面交PD于點(diǎn)M.
(1)求證:平面ABM
平面PCD;
(2)求三棱錐M-ABD的體積.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)
底面邊長(zhǎng)為2的正三棱錐
,其表面展開(kāi)圖是三角形
,如圖,求△
的各邊長(zhǎng)及此三棱錐的體積
.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐
中,
,
,
°,平面
平面
,
,
分別為
,
中點(diǎn).
(1)求證:
∥平面
;
(2)求證:
;
(3)求三棱錐
的體積.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在體積為
的正三棱錐
中,
長(zhǎng)為
,
為棱
的中點(diǎn),求![]()
(1)異面直線(xiàn)
與
所成角的大小(結(jié)果用反三角函數(shù)值表示);
(2)正三棱錐
的表面積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com