中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
f′(x)是函數y=f(x)的導函數,若y=f′(x)的圖象如圖所示則函數y=f(x)的圖象可能是(  )
分析:利用導數與函數單調性的關系即可得出.
解答:解:由y=f′(x)的圖象可知:當x<0或x>2時,f′(x)>0,此時函數f(x)單調遞增;當0<x<2時,f′(x)<0,此時函數f(x)單調遞減.
只有圖象C符合.
故選C.
點評:熟練掌握導數與函數單調性的關系是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)是函數y=
2
10x+1
-1(x∈R)的反函數,函數g(x)的圖象與函數y=
4-3x
x-1
的圖象關于直線y=x-1成軸對稱圖形,記F(x)=f(x)+g(x).
(1)求F(x)的解析式及定義域.
(2)試問在函數F(x)的圖象上是否存在這樣兩個不同點A、B,使直線AB恰好與y軸垂直?若存在,求出A、B兩點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于三次函數f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設f″(x)是函數y=f(x)的導數y=f′(x)的導數,若方程f″(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”;
定義:(2)設x0為常數,若定義在R上的函數y=f(x)對于定義域內的一切實數x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數y=f(x)的圖象關于點(x0,f(x0))對稱.
己知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數f(x)的“拐點”A的坐標
 

(2)檢驗函數f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數寫出一個有關“拐點”的結論
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•房山區二模)對于三次函數f(x)=ax3+bx2+cx+d(a≠0),給出定義:設f′(x)是函數y=f(x)的導數,f″(x)是f′(x)的導數,若方程f″(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”.某同學經過探究發現:任何一個三次函數都有“拐點”;任何一個三次函數都有對稱中心,且拐點就是對稱中心.若f(x)=
1
3
x3-
1
2
x2+
1
6
x+1
,則該函數的對稱中心為
(
1
2
,1)
(
1
2
,1)
,計算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數y=f(x)是函數y=ax(a>0且a≠1)的反函數,且y=f(x)的圖象過點(2,1),則f(x)=
log2x
log2x

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數y=f(x)是函數y=logax(a>0且a≠1)的反函數,且f(2)=
1
9
,則f(x)=(  )

查看答案和解析>>

同步練習冊答案