中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(本題滿分14分)
已知函數
(Ⅰ)求的最小值;
(Ⅱ)若上為單調增函數,求實數的取值范圍;
(Ⅲ)證明:.
(Ⅰ)1;(Ⅱ);(Ⅲ)見解析
(I)求導,根據導數求其極值最值,但要注意函數的定義域.
(II)本小題的實質是上恒成立問題,然后再轉化為函數最值來解決即可.
(III) 由(Ⅱ),取
,即.于是.
然后解決此問題要用到不等式的放縮,關鍵是
,然后再利用裂項求和的方法即可證明.
解:(Ⅰ)函數的定義域為.
,當.
為極小值點.極小值g(1)=1.                 ………………(4分)
(Ⅱ).
上恒成立,即上恒成立.
,所以.
所以,所求實數的取值范圍為.               ………………(8分)
(Ⅲ)由(Ⅱ),取
,即.于是.


.   
所以.     ……………(14分)
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分16分)已知
(I)如果函數的單調遞減區間為,求函數的解析式;
(II)在(Ⅰ)的條件下,求函數的圖像在點處的切線方程;
(III)若不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)已知函數f(x)=x3-ax2-3x.
(1)若f(x)在x∈[1,+∞)上是增函數,求實數a的取值范圍;
(2)若x=3是f(x)的極值點,求f(x)在x∈[1,a]上的最小值和最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設函數 則    ?   ?
A.x=為f(x)的極大值點B.x=為f(x)的極小值點
C.x=2為 f(x)的極大值點D.x=2為 f(x)的極小值點

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分15分)已知函數
(Ⅰ)討論的單調性;
(Ⅱ)當時,設,若存在,,使
求實數的取值范圍。為自然對數的底數,

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設函數可導,的圖象如圖1所示,則導函數的圖像可能為(  )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,且其導函數的圖像過原點.
(1)當時,求函數的圖像在處的切線方程;
(2)若存在,使得,求的最大值;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數,已知是奇函數。
(Ⅰ)求的值。
(Ⅱ)求的單調區間與極值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
設函數
(Ⅰ)求的單調區間;
(Ⅱ)當時,設的最小值為恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案