已知函數(shù)
.
(1)若
,求函數(shù)
的單調(diào)區(qū)間;
(2)若以函數(shù)
圖像上任意一點(diǎn)
為切點(diǎn)的切線的斜率
恒成立,求實(shí)數(shù)
的最小值.
(1)函數(shù)
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
;(2)實(shí)數(shù)
的最小值為
.
解析試題分析:(1)先求定義域,然后對函數(shù)求導(dǎo),令
,求出單調(diào)遞減區(qū)間;
,即求出單調(diào)遞增區(qū)間;(2) 由(I)知
恒成立可轉(zhuǎn)化為
,解得
.
試題解析:(1)當(dāng)
時(shí),
,定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0f/3/wzqra4.png" style="vertical-align:middle;" />,
3分
當(dāng)
時(shí),
,當(dāng)
時(shí),
∴f(x)的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
. 5分
(2) 由(1)知
,則
恒成立,
即![]()
當(dāng)
時(shí),
取得最大值
,∴
,∴
. 12分
考點(diǎn):導(dǎo)函數(shù)的應(yīng)用、最值問題、恒成立問題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)求證:
時(shí),
恒成立;
(2)當(dāng)
時(shí),求
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=
+xln x,g(x)=x3-x2-3.
(1)如果存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(2)如果對于任意的s,t∈
,都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax+x2,g(x)=xln a,a>1.
(1)求證:函數(shù)F(x)=f(x)-g(x)在(0,+∞)上單調(diào)遞增;
(2)若函數(shù)y=
-3有四個(gè)零點(diǎn),求b的取值范圍;
(3)若對于任意的x1,x2∈[-1,1]時(shí),都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ex-ln(x+m).
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
.
(1)若曲線
經(jīng)過點(diǎn)
,曲線
在點(diǎn)
處的切線與直線
垂直,求
的值;
(2)在(1)的條件下,試求函數(shù)
(
為實(shí)常數(shù),
)的極大值與極小值之差;
(3)若
在區(qū)間
內(nèi)存在兩個(gè)不同的極值點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013·重慶卷)設(shè)f(x)=a(x-5)2+6ln x,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
.
(1)當(dāng)
時(shí),求函數(shù)
在
處的切線方程;
(2)若函數(shù)
在區(qū)間(1,2)上不是單調(diào)函數(shù),試求
的取值范圍;
(3)已知
,如果存在
,使得函數(shù)![]()
在
處取得最小值,試求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=ax-(1+a2)x2,其中a>0,區(qū)間I={x|f(x)>0}.
(1)求I的長度(注:區(qū)間(α,β)的長度定義為β-α);
(2)給定常數(shù)k∈(0,1),當(dāng)1-k≤a≤1+k時(shí),求I長度的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com