已知函數(shù)![]()
.
(1)若曲線
經(jīng)過(guò)點(diǎn)
,曲線
在點(diǎn)
處的切線與直線
垂直,求
的值;
(2)在(1)的條件下,試求函數(shù)
(
為實(shí)常數(shù),
)的極大值與極小值之差;
(3)若
在區(qū)間
內(nèi)存在兩個(gè)不同的極值點(diǎn),求證:
.
(1)![]()
(2)當(dāng)
或
時(shí),![]()
;
當(dāng)
時(shí),![]()
;
(3)
.
解析試題分析:(1)利用導(dǎo)數(shù)的幾何意義,明確曲線
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
設(shè)f(x)=
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)f(x)=
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)f(x)=
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)f(x)=ln x+
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
經(jīng)調(diào)查統(tǒng)計(jì),某種型號(hào)的汽車在勻速行駛中,每小時(shí)的耗油量
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
在點(diǎn)
處的切線的斜率為
,建立方程
,再根據(jù)曲線
經(jīng)過(guò)點(diǎn)
,得到方程
,解方程組即得所求.
(2)利用“表解法”,確定函數(shù)的極值,注意討論
或
及
,的不同情況;
(3)根據(jù)
在區(qū)間
內(nèi)存在兩個(gè)極值點(diǎn),得到
,
即
在
內(nèi)有兩個(gè)不等的實(shí)根.
利用二次函數(shù)的圖象和性質(zhì)建立不等式組
求
的范圍.
試題解析:(1)![]()
,
直線
的斜率為
,
曲線
在點(diǎn)
處的切線的斜率為
,
①
曲線
經(jīng)過(guò)點(diǎn)
,
②
由①②得:
3分
(2)由(1)知:
,![]()
,
, 由
,或
.
當(dāng)
,即
或
時(shí),
,
,
變化如下表![]()
![]()
![]()
![]()
![]()
![]()
![]()
+ 0 ![]()
![]()
課課練與單元測(cè)試系列答案
世紀(jì)金榜小博士單元期末一卷通系列答案
單元測(cè)試AB卷臺(tái)海出版社系列答案
黃岡新思維培優(yōu)考王單元加期末卷系列答案
名校名師奪冠金卷系列答案
小學(xué)英語(yǔ)課時(shí)練系列答案
培優(yōu)新幫手系列答案
天天向上一本好卷系列答案
小學(xué)生10分鐘應(yīng)用題系列答案
課堂作業(yè)廣西教育出版社系列答案
年級(jí)
高中課程
年級(jí)
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
,其中a為正實(shí)數(shù).
(1)當(dāng)a=
時(shí),求f(x)的極值點(diǎn).
(2)若f(x)為[
,
]上的單調(diào)函數(shù),求a的取值范圍.
.
(1)若
存在單調(diào)遞減區(qū)間,求實(shí)數(shù)
的取值范圍;
(2)若
,求證:當(dāng)
時(shí),
恒成立;
(3)設(shè)
,證明:
.
ax2-(2a+1)x+2ln x,a∈R.
(1)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)求f(x)的單調(diào)區(qū)間.
.
(1)若
,求函數(shù)
的單調(diào)區(qū)間;
(2)若以函數(shù)
圖像上任意一點(diǎn)
為切點(diǎn)的切線的斜率
恒成立,求實(shí)數(shù)
的最小值.
ax3-
x2+cx+d(a,c,d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求a,c,d的值;
(2)若h(x)=
x2-bx+
-
,解不等式f′(x)+h(x)<0.
-1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)m∈R,對(duì)任意的a∈(-1,1),總存在x0∈[1,e],使得不等式ma-f(x0)<0成立,求實(shí)數(shù)m的取值范圍.
在
處存在極值.
(1)求實(shí)數(shù)
的值;
(2)函數(shù)
的圖像上存在兩點(diǎn)A,B使得
是以坐標(biāo)原點(diǎn)O為直角頂點(diǎn)的直角三角形,且斜邊AB的中點(diǎn)在
軸上,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
時(shí),討論關(guān)于
的方程
的實(shí)根個(gè)數(shù).
(升)關(guān)于行駛速度
(千米/時(shí))的函數(shù)可表示為
.已知甲、乙兩地相距
千米,在勻速行駛速度不超過(guò)
千米/時(shí)的條件下,該種型號(hào)的汽車從甲地 到乙地的耗油量記為
(升).
(Ⅰ)求函數(shù)
的解析式;
(Ⅱ)討論函數(shù)
的單調(diào)性,當(dāng)
為多少時(shí),耗油量
為最少?最少為多少升?
版權(quán)聲明:本站所有文章,圖片來(lái)源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無(wú)意侵犯版權(quán),如有侵權(quán),請(qǐng)作者速來(lái)函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)