(本題滿分14分)
ABCD為矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P為AB的中點.![]()
(1)求證:平面PCF⊥平面PDE;
(2)求證:AE∥平面BCF.
證明:(1)在矩形ABCD中,由AP=BP=BC=2a可得PC=PD=
………………1分
又CD=4a,由勾股定理可得PD⊥PC……………………3分
因為CF⊥平面ABCD,則PD⊥CF……………………5分
由PC
CF=C可得PD⊥平面PFC……………………6分
故平面PCF⊥平面PDE……………………7分
(2)作FC中點M,連接EM、BM
由CF⊥平面ABCD,DE⊥平面ABCD可得CM∥DE,又CM=DE=a,得四邊形DEMC為平行四邊形……………………9分
故ME∥CD∥AB,且ME=D=AB,所以四邊形AEMB為平行四邊
形
故AE∥BM……………………12分
又AE
平面BCF,BM
平面BCF,所以AE∥平面BC
F. ……………………14分
解析
科目:高中數學 來源: 題型:解答題
在如圖所示的空間直角坐標系O-xyz中,原點O是BC的中點,A點坐標為
,D點在平面yoz上,BC=2,∠BDC=90°,∠DCB=30°.![]()
(Ⅰ)求D點坐標;
(Ⅱ)求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
四、附加題:本大題共2小題,每小題10分,共20分。
(20)(本小題滿分10分)
已知
是邊長為1的正方形,
分別為
上的點,且
沿
將正方形折成直二面角
.![]()
(I)求證:平面
平面
;
(II)設
點
與平面
間的距離為
,試用
表示
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com