中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設f(x)=lg
1+2x+4xa
3
,如果當x∈(-∞,1]時f(x)有意義,求實數a的取值范圍.
當x∈(-∞,1]時f(x)=lg
1+2x+4xa
3
有意義的函數問題,
轉化為1+2x+4xa>0在x∈(-∞,1]上恒成立的不等式問題.
不等式1+2x+4xa>0在x∈(-∞,1]上恒成立,
即:a>-[(
1
2
2x+(
1
2
x]在x∈(-∞,1]上恒成立.
設t=(
1
2
x,則t≥
1
2
,又設g(t)=t2+t,其對稱軸為t=-
1
2

∴g(t)=t2+t在[
1
2
,+∞)上為增函數,當t=
1
2
時,g(t)有最小值g(
1
2
)=(
1
2
2+
1
2
=
3
4

所以a的取值范圍是a>-
3
4
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設f(x)=lg
1+2x+4xa3
,如果當x∈(-∞,1]時f(x)有意義,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=lg
1+2x+4xa3
(a∈R)

(Ⅰ)當a=-2時,求f(x)的定義域;
(Ⅱ)如果x∈(-∞,-1)時,f(x)有意義,試確定a的取值范圍; 
(Ⅲ)如果0<a<1,求證:當x≠0時,有2f(x)<f(2x).

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=lg
1+2x+4xa
3
  (a∈R)
,若當x∈(-∞,1]時f(x)有意義,則a的取值范圍是
(-
3
4
,+∞)
(-
3
4
,+∞)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設f(x)=lg
1+2x+4xa
3
  (a∈R)
,若當x∈(-∞,1]時f(x)有意義,則a的取值范圍是______.

查看答案和解析>>

同步練習冊答案