中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

設函數.
(1)若對一切恒成立,求的最大值;
(2)設,且是曲線上任意兩點,若對任意,直線的斜率恒大于常數,求的取值范圍.

(1)的最大值為;(2)實數的取值范圍是.

解析試題分析:(1)當時,將不等式對一切恒成立等價轉化為來處理,利用導數求處函數的最小值,進而建立有關參數的不等式進行求解,以便確定的最大值;(2)先根據題意得到,假設,得到,進而得到
,并構造新函數,利用函數上為單調遞增函數并結合基本不等式法求出的取值范圍.
試題解析:(1)當時,不等式對一切恒成立,則有
,令,解得,列表如下:









 

極小值

故函數處取得極小值,亦即最小值,即
則有,解得,即的最大值是
(2)由題意知,不妨設
則有,即
,則,這說明函數上單調遞增,
,所以
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
(I)求f(x)的單調區間及極值;
(II)若關于x的不等式恒成立,求實數a的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若曲線在點處的切線平行于軸,求的值;
(2)當時,若直線與曲線上有公共點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)判斷函數的奇偶性;
(2)求函數的單調區間;
(3)若關于的方程有實數解,求實數的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 .
(1)若 的極小值為1,求a的值.
(2)若對任意 ,都有 成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)討論函數的單調性;
(2)證明:若,則對于任意

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)=+ax-lnx(a∈R).
(Ⅰ)當a=1時,求函數f(x)的極值;
(Ⅱ)當a≥2時,討論函數f(x)的單調性;
(Ⅲ)若對任意及任意∈[1,2],恒有成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若函數在區間上存在極值,求實數的取值范圍;
(Ⅱ)如果當時,不等式恒成立,求實數的取值范圍,并且判斷代數式的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)討論的單調性;
(Ⅱ)試確定的值,使不等式恒成立.

查看答案和解析>>