如圖,已知
是圓的直徑,
垂直圓所在的平面,
是圓上任一點,
是線段
的中點,
是線段
上的一點.![]()
求證:(Ⅰ)若
為線段
中點,則
∥平面
;
(Ⅱ)無論
在
何處,都有
.
科目:高中數學 來源: 題型:解答題
直三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.![]()
(1)求證:直線AB1⊥平面A1BD.
(2)求二面角A-A1D-B正弦值的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,四邊形PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
.![]()
(Ⅰ)若M為PA中點,求證:AC∥平面MDE;
(Ⅱ)求平面PAD與PBC所成銳二面角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖:長方形
所在平面與正
所在平面互相垂直,
分別為
的中點.![]()
(Ⅰ)求證:
平面
;
(Ⅱ)試問:在線段
上是否存在一點
,使得平面
平面
?若存在,試指出點
的位置,并證明你的結論;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知平行六面體ABCD—A1B1C1D1的底面為正方形,O1、O分別為上、下底面的中心,且A1在底面ABCD上的射影是O。![]()
(Ⅰ)求證:平面O1DC⊥平面ABCD;
(Ⅱ)若∠A1AB=60°,求平面BAA1與平面CAA1的夾角的余弦值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,四棱柱
的底面
是平行四邊形,且
底面
,
,
,
°,點
為
中點,點
為
中點.![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)設二面角
的大小為
,直線
與平面
所成的角為
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com