中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

二次函數f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在區間[-1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,求實數m的取值范圍

(1)f(x)=x2-x+1,(2)

解析試題分析:(1)求二次函數解析式,一般方法為待定系數法.二次函數解析式有三種設法,本題設一般式f(x)=ax2+bx+1,再利用等式恒成立,求出項的系數.由a(x+1)2+b(x+1)-ax2-bx=2x得2ax+a+b=2x,所以.(2)恒成立問題一般轉化為最值問題.先構造不等式,再變量分離,這樣就轉化為求函數的最小值問題.
試題解析:(1)設f(x)=ax2+bx+1
a(x+1)2+b(x+1)-ax2-bx=2x
2ax+a+b=2x

f(x)=x2-x+1
(2)

考點:二次函數解析式,二次函數最值,不等式恒成立

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知的三內角分別為,向量
,記函數.
(1)若,求的面積;
(2)若關于的方程有兩個不同的實數解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

是實數,函數).
(1)求證:函數不是奇函數;
(2)當時,求滿足的取值范圍;
(3)求函數的值域(用表示).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,不等式的解集為.
(1)求的值;
(2)若對一切實數恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數時取得最大值4.
(1)求的最小正周期;
(2)求的解析式;
(3)若,求的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的定義域為.
(1)求函數上的最小值;
(2)對,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的單調區間.
(2)若方程有4個不同的實根,求的范圍?
(3)是否存在正數,使得關于的方程有兩個不相等的實根?如果存在,求b滿足的條件,如果不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x3(a>0且a≠1).
(1)求函數f(x)的定義域;
(2)討論函數f(x)的奇偶性;
(3)求a的取值范圍,使f(x)>0在定義域上恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,滿足
(1)求常數c的值;
(2)解關于的不等式

查看答案和解析>>

同步練習冊答案