(15分)已知橢圓的對稱軸在坐標軸上,短軸的一個端點與兩個焦點組成一個等邊三角形,
(1)求橢圓的離心率;
(2)若焦點到同側頂點的距離為
,求橢圓的方程.
科目:高中數學 來源: 題型:解答題
如圖,設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左右焦點分別為
,線段
的中點分別為
,且△
是面積為4的直角三角形.
(Ⅰ)求該橢圓的離心率和標準方程;
(Ⅱ)過
做直線
交橢圓于P,Q兩點,使
,求直線
的方程.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系
中,點P到兩定點
,
的距離之和等于4,設點P的軌跡為
,過點
的直線C交于A,B兩點.
(1)寫出C的方程;
(2)設d為A、B兩點間的距離,d是否存在最大值、最小值,若存在, 求出d的最大值、最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
的焦點為
,過焦點
且不平行于
軸的動直線
交拋物線于
,
兩點,拋物線在
、
兩點處的切線交于點
.![]()
![]()
(Ⅰ)求證:
,
,
三點的橫坐標成等差數列;
(Ⅱ)設直線
交該拋物線于
,
兩點,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓E:
(a,b>0)過M(2,
) ,N(
,1)兩點,O為坐標原點,
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且
?若存在,寫出該圓的方程,若不存在說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點B恰好是拋物線
的焦點,
離心率等于
.直線
與橢圓C交于
兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ) 橢圓C的右焦點
是否可以為
的垂心?若可以,求出直線
的方程;
若不可以,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的方程為
,點
分別為其左、右頂點,點
分別為其左、右焦點,以點
為圓心,
為半徑作圓
;以點
為圓心,
為半徑作圓
;若直線
被圓
和圓
截得的弦長之比為
;
(1)求橢圓
的離心率;
(2)己知
,問是否存在點
,使得過
點有無數條直線被圓
和圓
截得的弦長之比為
;若存在,請求出所有的
點坐標;若不存在,請說明理由.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的離心率
,且橢圓過點
.
(1)求橢圓
的方程;
(2)若
為橢圓
上的動點,
為橢圓的右焦點,以
為圓心,
長為半徑作圓
,過點
作圓
的兩條切線
,(
為切點),求點
的坐標,使得四邊形
的面積最大.]
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com