中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=x3-ax+1.
(1)求x=1時,f(x)取得極值,求a的值;
(2)求f(x)在[0,1]上的最小值;
(3)若對任意m∈R,直線y=-x+m都不是曲線y=f(x)的切線,求a的取值范圍.

(1)1   (2)見解析   (3)(-∞,-1)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
(1)當時,求函數的單調區間;
(2)當時,函數圖象上的點都在所表示的平面區域內,不等式恒成立,求實數的取值范圍.    [來源:學科

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函數f(x)的單調區間;
(2)若函數y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數g(x)=x3+x2(f′(x)是f(x)的導數)在區間(t,3)上總不是單調函數,求m的取值范圍;
(3)求證:×…×<(n≥2,n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數() =,g ()=+
(1)求函數h ()=()-g ()的零點個數,并說明理由;
(2)設數列滿足,證明:存在常數M,使得對于任意的,都有≤ .

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)討論的單調性.
(2)證明:,e為自然對數的底數)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

據環保部門測定,某處的污染指數與附近污染源的強度成正比,與到污染源距離的平方成反比,比例常數為.現已知相距18的A,B兩家化工廠(污染源)的污染強度分別為,它們連線上任意一點C處的污染指數等于兩化工廠對該處的污染指數之和.設).
(1)試將表示為的函數; (2)若,且時,取得最小值,試求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)試問函數能否在處取得極值,請說明理由;
(2)若,當時,函數的圖像有兩個公共點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中m∈R.
(1)若0<m≤2,試判斷函數f (x)=f1 (x)+f2 (x)的單調性,并證明你的結論;
(2)設函數 若對任意大于等于2的實數x1,總存在唯一的小于2的實數x2,使得g (x1) =" g" (x2) 成立,試確定實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求的單調區間;
(2)若上恒成立,求所有實數的值;
(3)對任意的,證明:

查看答案和解析>>

同步練習冊答案