中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)是定義在R上的偶函數,且在區間[0,+∞)上單調遞增.若實數a滿足f(log2a)+≤2f(1),則a的取值范圍是 (  )
A.[1,2]
B.
C.
D.(0,2]
C
由題意知a>0,又=log2a1=-log2a.
∵f(x)是R上的偶函數,
∴f(log2a)=f(-log2a)=
∵f(log2a)+≤2f(1),
∴2f(log2a)≤2f(1),即f(log2a)≤f(1).又因f(x)在[0,+∞)上遞增.
∴|log2a|≤1,-1≤log2a≤1,
∴a∈,選C
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的左焦點為,左、右頂點分別為,過點且傾斜角為的直線交橢圓于兩點,橢圓的離心率為,
(1)求橢圓的方程;
(2)若是橢圓上不同兩點,軸,圓過點,且橢圓上任意一點都不在圓內,則稱圓為該橢圓的內切圓.問橢圓是否存在過點的內切圓?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

函數的定義域為,若存在常數,使得對一切實數均成立,則稱為“圓錐托底型”函數.
(1)判斷函數是否為“圓錐托底型”函數?并說明理由.
(2)若是“圓錐托底型” 函數,求出的最大值.
(3)問實數滿足什么條件,是“圓錐托底型” 函數.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知命題表示的曲線是雙曲線;命題函數在區間上為增函數,若“”為真命題,“”為假命題,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)判斷函數的奇偶性;
(2)試用函數單調性定義說明函數在區間上的增減性;
(3)若滿足:,試證明:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設函數f(x)在R上可導,其導函數為f′(x),且函數y=(1-x)f′(x)的圖象如圖所示,則下列結論中一定成立的是(  )
A.函數f(x)有極大值f(2)和極小值f(1)
B.函數f(x)有極大值f(-2)和極小值f(1)
C.函數f(x)有極大值f(2)和極小值f(-2)
D.函數f(x)有極大值f(-2)和極小值f(2)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知其導函數的圖象如圖,則函數的極小值是( )
A.
B.
C.
D.c

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數,則函數的單調遞減區間為(    )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數,若是以2為周期的偶函數,且當時,有,則函數的反函數為(   )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案