(本小題滿分12分)
已知函數(shù)
,且
,
。
(1)求函數(shù)
的解析式; (2)求函數(shù)
在
上的值域。
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
設函數(shù)![]()
(Ⅰ) 當
時,求函數(shù)
的最大值;
(Ⅱ)當
,
,方程
有唯一實數(shù)解,求正數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)探究函數(shù)
的最小值,并確定取得最小值時x的值.列表如下:
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 16 | 10 | 8.34 | 8.1 | 8.01 | 8 | 8.01 | 8.04 | 8.08 | 8.6 | 10 | 11.6 | 15.14 | … |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)
定義域為
,且
.
設點
是函數(shù)圖像上的任意一點,過點
分別作直線
和
軸的垂線,垂足分別為
.![]()
(1)寫出
的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)設點
的橫坐標
,求
點的坐標(用
的代數(shù)式表示);(7分)
(3)設
為坐標原點,求四邊形
面積的最小值.(7分)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
在點
處的切線方程為
.
(I)求
,
的值;
(II)對函數(shù)
定義域內(nèi)的任一個實數(shù)
,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題9分)已知函數(shù)
。
(Ⅰ)若
在
上的最小值是
,試解不等式
;
(Ⅱ)若
在
上單調(diào)遞增,試求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知
是定義在[-1,1]上的奇函數(shù),當
,且
時有
.
(1)判斷函數(shù)
的單調(diào)性,并給予證明;
(2)若
對所有
恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)設
為非負實數(shù),函數(shù)
.
(Ⅰ)當
時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)討論函數(shù)
的零點個數(shù).
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com