中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知圓過直線和圓的交點,且原點在圓上.則圓的方程為             

 

【答案】

【解析】

試題分析:根據題意可設圓的方程為:,因為原點在圓上,故.所以所求圓的方程為.

考點:直線與圓的位置關系,圓的標準方程.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知圓M的方程為:x2+y2-2x-2y-6=0,以坐標原點為圓心的圓N與圓M相內切.
(1)求圓N的方程;
(2)圓N與x軸交于E、F兩點,圓內的動點D使得|DE|、|DO|、|DF|成等比數列,求
DE
DF
的取值范圍;
(3)過點M作兩條直線分別與圓N相交于A、B兩點,且直線MA和直線MB的傾斜角互補,試判斷直線MN和AB是否平行?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,已知圓x2+y2=1與x軸正半軸的交點為F,AB為該圓的一條弦,直線AB的方程為x=m.記以AB為直徑的圓為⊙C,記以點F為右焦點、短半軸長為b(b>0,b為常數)的橢圓為D.
(1)求⊙C和橢圓D的標準方程;
(2)當b=1時,求證:橢圓D上任意一點都不在⊙C的內部;
(3)已知點M是橢圓D的長軸上異于頂點的任意一點,過點M且與x軸不垂直的直線交橢圓D于P、Q兩點(點P在x軸上方),點P關于x軸的對稱點為N,設直線QN交x軸于點L,試判斷
OM
OL
是否為定值?并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓O的方程為x2+y2=1和點A(a,0),設圓O與x軸交于P、Q兩點,M是圓OO上異于P、Q的任意一點,過點A(a,0)且與x軸垂直的直線為l,直線PM交直線l于點E,直線QM交直線l于點F.
(1)若a=3,直線l1過點A(3,0),且與圓O相切,求直線l1的方程;
(2)證明:若a=3,則以EF為直徑的圓C總過定點,并求出定點坐標;
(3)若以EF為直徑的圓C過定點,探求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C1:x2+y2=5和圓C2:x2+y2=1,O是原點,點B在圓C1上,OB交圓C2于C.點D在 x軸上,
.
BD
.
OD
=0
,AJ在BD上,
.
BD
.
CA
=0

(1)求點A的軌跡H的方程
(2)過軌跡H的右焦點作直線交H于E、F,是否在y軸上存在點Q使得△QEF是正三角形;若存在,求出點q的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江蘇省無錫一中高二(上)期中數學試卷(解析版) 題型:解答題

已知圓O的方程為x2+y2=1和點A(a,0),設圓O與x軸交于P、Q兩點,M是圓OO上異于P、Q的任意一點,過點A(a,0)且與x軸垂直的直線為l,直線PM交直線l于點E,直線QM交直線l于點F.
(1)若a=3,直線l1過點A(3,0),且與圓O相切,求直線l1的方程;
(2)證明:若a=3,則以EF為直徑的圓C總過定點,并求出定點坐標;
(3)若以EF為直徑的圓C過定點,探求a的取值范圍.

查看答案和解析>>

同步練習冊答案