中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ln x.
(1)若a>0,試判斷f(x)在定義域內的單調性;
(2)若f(x)在[1,e]上的最小值為,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.
(1)f(x)在(0,+∞)上是單調遞增函數
(2)a=-.
(3)a≥-1時,f(x)<x2在(1,+∞)上恒成立

試題分析:解 (1)由題意f(x)的定義域為(0,+∞),且f′(x)=.因為a>0,所以f′(x)>0,故f(x)在(0,+∞)上是單調遞增函數.  3分
(2)由(1)可知,f′(x)=.
①若a≥-1,則xa≥0,即f′(x)≥0在[1,e]上恒成立,此時f(x)在[1,e]上為增函數,
所以f(x)minf(1)=-a,所以a=- (舍去).  5分
②若a≤-e,則xa≤0,即f′(x)≤0在[1,e]上恒成立,此時f(x)在[1,e]上為減函數,
所以f(x)minf(e)=1-a=- (舍去).   7分
③若-e<a<-1,令f′(x)=0得x=-a,當1<x<-a時,f′(x)<0,所以f(x)在[1,-a]上為減函數;當-a<x<e時,f′(x)>0,所以f(x)在[-a,e]上為增函數,所以f(x)minf(-a)=ln(-a)+1=a=-
綜上所述,a=-.     9分
(3)因為f(x)<x2,所以ln x<x2.又x>0,所以a>xln xx3.
g(x)=xln xx3
h(x)=g′(x)=1+ln x-3x2h′(x)=-6x.   11分
因為x∈(1,+∞)時,h′(x)<0,h(x)在(1,+∞)上是減函數.
所以h(x)<h(1)=-2<0,即g′(x)<0,
所以g(x)在[1,+∞)上也是減函數,則g(x)<g(1)=-1,
所以a≥-1時,f(x)<x2在(1,+∞)上恒成立.  13分
點評:主要是考查了導數在研究函數中的運用,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

三次函數當是有極大值4,當是有極小值0,且函數過原點,則此函數是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)當時,求曲線在點處的切線方程;
(2)對任意在區間上是增函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)直線為曲線的切線,且經過原點,求直線的方程及切點坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數f(x)=x3-12x+5,x∈R.
(1)求函數f(x)的單調區間和極值;
(2)若關于x的方程f(x)=a有三個不同實根,求實數a的取值范圍;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(I)當時,討論函數的單調性:
(Ⅱ)若函數的圖像上存在不同兩點,設線段的中點為,使得在點處的切線與直線平行或重合,則說函數是“中值平衡函數”,切線叫做函數的“中值平衡切線”.
試判斷函數是否是“中值平衡函數”?若是,判斷函數的“中值平衡切線”的條數;若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知實數ab滿足a≤1,b≤1,則函數有極值的概率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數為常數,e是自然對數的底數.
(Ⅰ)當時,證明恒成立;
(Ⅱ)若,且對于任意恒成立,試確定實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)若對任意的恒成立,求實數的最小值.
(2)若且關于的方程上恰有兩個不相等的實數根,求實數的取值范圍;
(3)設各項為正的數列滿足:求證:

查看答案和解析>>

同步練習冊答案