函數(shù)![]()
(1)若
,證明
;
(2)若不等式
時
和
都恒成立,求實數(shù)
的取值范圍。
(1)構(gòu)造函數(shù)g(x)="f(x)-"
,利用導(dǎo)數(shù)來判定單調(diào)性得到證明。
(2)
或![]()
解析試題分析:(1)令g(x)="f(x)-"
="ln(x+1)-"
,
則g′(x)=
-
∵x>0,
∴g′(x)>0,∴g(x)在(0,+∞)上是增函數(shù).
故g(x)>g(0)=0,即f(x)>![]()
(2)原不等式等價于
x2-f(x2)≤m2-2bm-3.
令h(x)=
x2-f(x2)=
x2-ln(1+x2),
則h′(x)=x-
=![]()
令h′(x)=0,得x=0,x=1,x=-1.
∴當x∈[-1,1]時,h(x)max=0,
∴m2-2bm-3≥0.令Q(b)=-2mb+m2-3,
則Q(1)=m2-2m-3≥0, Q(-1)=m2+2m-3≥0
解得m≤-3或m≥3.
考點:函數(shù)的導(dǎo)數(shù)
點評:本題考查函數(shù)的導(dǎo)數(shù)和函數(shù)思想的應(yīng)用,本題解題的關(guān)鍵是構(gòu)造新函數(shù),對于新函數(shù)進行求導(dǎo)求最值,再利用函數(shù)的思想來解題,這種題目可以出現(xiàn)在高考卷中
科目:高中數(shù)學 來源: 題型:解答題
設(shè)
是定義在
的可導(dǎo)函數(shù),且不恒為0,記
.若對定義域內(nèi)的每一個
,總有
,則稱
為“
階負函數(shù)”;若對定義域內(nèi)的每一個
,總有
,
則稱
為“
階不減函數(shù)”(
為函數(shù)
的導(dǎo)函數(shù)).
(1)若
既是“1階負函數(shù)”,又是“1階不減函數(shù)”,求實數(shù)
的取值范圍;
(2)對任給的“2階不減函數(shù)”
,如果存在常數(shù)
,使得
恒成立,試判斷
是否為“2階負函數(shù)”?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)
,
,其中
為實數(shù).
(1)若
在
上是單調(diào)減函數(shù),且
在
上有最小值,求
的取值范圍;
(2)若
在
上是單調(diào)增函數(shù),試求
的零點個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
的圖象在點
處的切線斜率為
.
(Ⅰ)求實數(shù)
的值;
(Ⅱ)判斷方程
根的個數(shù),證明你的結(jié)論;
(Ⅲ)探究:是否存在這樣的點
,使得曲線
在該點附近的左、右的兩部分分別位于曲線在該點處切線的兩側(cè)?若存在,求出點A的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=2x-
-aln(x+1),a∈R.
(1)若a=-4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求y=f(x)的極值點(即函數(shù)取到極值時點的橫坐標).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
=
,
(1)求函數(shù)
的單調(diào)區(qū)間
(2)若關(guān)于
的不等式
對一切![]()
(其中
)都成立,求實數(shù)
的取值范圍;
(3)是否存在正實數(shù)![]()
,使
?若不存在,說明理由;若存在,求
取值的范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
在(1,2)上是增函數(shù),
在(0,1)上是減函數(shù)。
求
的值;
當
時,若
在
內(nèi)恒成立,求實數(shù)
的取值范圍;
求證:方程
在
內(nèi)有唯一解.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com