已知函數(shù)
(
為常數(shù))是實(shí)數(shù)集R上的奇函數(shù),函數(shù)
是區(qū)間[-1,1]上的減函數(shù)
(I)求
的值;
(II)求
的取值范圍;
(III)若
在
上恒成立,求
的取值范圍。
(1)
="0." (2)![]()
解析試題分析:解:(Ⅰ)
函數(shù)
是實(shí)數(shù)集R上的奇函數(shù),![]()
所以
=0. 3分
(Ⅱ)
是區(qū)間[-1,1]上的減函數(shù)
在[-1,1]上恒成立![]()
. 5分
又![]()
,![]()
.![]()
. 8分
(Ⅲ)![]()
在區(qū)間[-1,1]上單調(diào)遞減,![]()
.
只需
.![]()
恒成立. 10分
令
,
則
12分![]()
![]()
而
恒成立, ![]()
. 14分
考點(diǎn):本試題考查了導(dǎo)數(shù)的知識(shí)。
點(diǎn)評(píng):對(duì)于導(dǎo)數(shù)在函數(shù)中的作用,主要是解決函數(shù)的單調(diào)性的運(yùn)用,同時(shí)要結(jié)合不等式恒成立,分離參數(shù)發(fā),構(gòu)造新函數(shù),通過(guò)函數(shù)的最值來(lái)分析得到參數(shù)的取值范圍問(wèn)題,這是高考的一個(gè)熱點(diǎn),要加以關(guān)注。而這類(lèi)問(wèn)題的處理方法既可以分離也可以不分離來(lái)做,因題而異。屬于中檔題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
設(shè)函數(shù)
.
(1)求函數(shù)
的單調(diào)增區(qū)間;
(2)若不等式
在
恒成立,求實(shí)數(shù)m的取值范圍.
(3)若對(duì)任意的
,總存在
,使不等式
成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)已知函數(shù)
(![]()
R).
(1)若
,求函數(shù)
的極值;
(2)是否存在實(shí)數(shù)
使得函數(shù)
在區(qū)間
上有兩個(gè)零點(diǎn),若存在,求出
的取值范圍;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
。
(1)若不等式
對(duì)任意的實(shí)數(shù)
恒成立,求實(shí)數(shù)
的取值范圍;
(2)設(shè)
,且
在
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù)![]()
(1)是否存在實(shí)數(shù)![]()
,使得函數(shù)
的定義域、值域都是
,若存在,則求出
的值,若不存在,請(qǐng)說(shuō)明理由.
(2)若存在實(shí)數(shù)![]()
,使得函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/23/9/epuwj1.png" style="vertical-align:middle;" />時(shí),值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/da/1/r0vir1.png" style="vertical-align:middle;" /> (
),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知實(shí)數(shù)
,函數(shù)
.
(I)討論
在
上的奇偶性;
(II)求函數(shù)
的單調(diào)區(qū)間;
(III)求函數(shù)
在閉區(qū)間
上的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)若曲線
在
和
處的切線互相平行,求
的值;
(Ⅱ)求
的單調(diào)區(qū)間;
(Ⅲ)設(shè)
,若對(duì)任意
,均存在
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
若函數(shù)
為奇函數(shù),當(dāng)
時(shí),
(如圖).![]()
(Ⅰ)求函數(shù)
的表達(dá)式,并補(bǔ)齊函數(shù)
的圖象;
(Ⅱ)用定義證明:函數(shù)
在區(qū)間
上單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
把邊長(zhǎng)為
的等邊三角形鐵皮剪去三個(gè)相同的四邊形(如圖陰影部分)后,用剩余部分做成一個(gè)無(wú)蓋的正三棱柱形容器(不計(jì)接縫),設(shè)容器的高為
,容積為
.![]()
(Ⅰ)寫(xiě)出函數(shù)
的解析式,并求出函數(shù)的定義域;
(Ⅱ)求當(dāng)x為多少時(shí),容器的容積最大?并求出最大容積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com