中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知F1(-2,0),F2(2,0),點P滿足|PF1|-|PF2|=2,記點P的軌跡為E.
(1)求軌跡E的方程;
(2)若直線l過點F2且與軌跡E交于P、Q兩點.無論直線l繞點F2怎樣轉動,在x軸上總存在定點M(m,0),使MP⊥MQ恒成立,求實數m的值.
分析:(1)由條件知,點P的軌跡E是以F1、F2為焦點的雙曲線右支,從而寫出軌跡E的方程即可.
(2)當直線l的斜率存在時,設直線方程為y=k(x-2),P(x1,y1),Q(x2,y2),將直線的方程代入雙曲線的方程,消去y得到關于x的一元二次方程,再結合根系數的關系利用向量垂直關系即可求得m值,從而解決問題.
解答:解:(1)由|PF1|-|PF2|=2<|F1F2|知,點P的軌跡E是以F1、F2為焦點的雙曲線右支,
由c=2,2a=2,∴b2=3,故軌跡E的方程為x2-
y2
3
=1(x≥1)

(2)當直線l的斜率存在時,設直線方程為y=k(x-2),P(x1,y1),Q(x2,y2),
與雙曲線方程聯立消y得(k2-3)x2-4k2x+4k2+3=0,
k2-3≠0
△>0
x1+x2=
4k2
k2-3
>0
x1x2=
4k2+3
k2-3
>0

精英家教網解得k2>3.
MP
MQ
=(x1-m)(x2-m)+y1y2

=(x1-m)(x2-m)+k2(x1-2)(x2-2)
=(k2+1)x1x2-(2k2+m)(x1+x2)+m2+4k2
=
(k2+1)(4k2+3)
k2-3
-
4k2(2k2+m)
k2-3
+m2+4k2

=
3-(4m+5)k2
k2-3
+m2
.(7分)
∵MP⊥MQ,∴
MP
MQ
=0

故得3(1-m2)+k2(m2-4m-5)=0對任意的k2>3恒成立,
1-m2=0
m2-4m-5=0
,解得m=-1.
∴當m=-1時,MP⊥MQ.
當直線l的斜率不存在時,由P(2,3),Q(2,-3)及M(-1,0)知結論也成立,
綜上,當m=-1時,MP⊥MQ.
點評:本題考查用待定系數法求雙曲線的標準方程,利用兩個向量的數量積公式及雙曲線的性質解決具體問題,體現了分類討論的數學思想.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知F1(-2,0),F2(2,0),點P滿足|PF1|-|PF2|=2,記點P的軌跡為E.求軌跡E的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F1(-2,0),F2(2,0)是橢圓C的兩個焦點,過F1的直線與橢圓C的兩個交點為M,N,且|MN|的最小值為6.
(I)求橢圓C的方程;
(II)設A,B為橢圓C的長軸頂點.當|MN|取最小值時,求∠AMB的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F1(-2,0),F2(2,0),點P滿足|PF1|-|PF2|=2,記點P的軌跡為E;
(Ⅰ)求軌跡E的方程;
(Ⅱ)若直線l過點F2且與軌跡E交于P、Q兩點;
①設點M(m,0),問:是否存在實數m,使得直線l繞點F2無論怎樣轉動,都有
MP
MQ
=0
成立?若存在,求出實數m的值;若不存在,請說明理由;
②過P、Q作直線x=
1
2
的垂線PA、QB,垂足分別為A、B,記λ=
|PA|+|QB|
|AB|
,求λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F1(-
2
,0),F2
2
,0),點P滿足|PF1|+|PF2|=2
3
,記點P的軌跡為E
(Ⅰ)求軌跡E的方程;
(Ⅱ)設軌跡E與直線y=kx+m(k≠0)相交于不同的兩點M,N.已知A(0,-1),當|AM|=|AN|時,求m的取值范圍.

查看答案和解析>>

同步練習冊答案