如圖,制圖工程師要用兩個同中心的邊長均為4的正方形合成一個八角形圖形.由對稱性,圖中8個三角形都是全等的三角形,設
.![]()
(1)試用
表示
的面積;
(2)求八角形所覆蓋面積的最大值,并指出此時
的大小.
科目:高中數(shù)學 來源: 題型:解答題
某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元。為了增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出
名員工從事第三產(chǎn)業(yè),調(diào)整后他們平均每人每年創(chuàng)造利為
萬元
,剩下的員工平均每人每年創(chuàng)造的利潤可以提高
.
(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(2)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則
的取值范圍是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
.
(1)若
的定義域和值域均是
,求實數(shù)
的值;
(2)若
在區(qū)間
上是減函數(shù),且對任意的
,
,總有
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
經(jīng)過長期觀測得到:在交通繁忙的時段內(nèi),某公路段汽車的車流量
(千輛/時)與汽車的平均速度
(千米/時)之間的函數(shù)關(guān)系為
(
).
(1)在該時段內(nèi),當汽車的平均速度
為多少時,車流量最大?最大車流量為多少?
(2)若要求在該時段內(nèi)車流量超過
千輛/時,則汽車的平均速度應在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(a≠0)滿足
,
為偶函數(shù),且x=-2是函數(shù)
的一個零點.又
(
>0).
(1)求函數(shù)
的解析式;
(2)若關(guān)于x 的方程
在
上有解,求實數(shù)
的取值范圍;
(3)令
,求
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=xm-
且f(4)=
.
(1)求m的值;
(2)判定f(x)的奇偶性;
(3)判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知二次函數(shù)f(x)=ax2+bx+c (a≠0)且滿足f(-1)=0,對任意實數(shù)x,恒有f(x)-x≥0,并且當x∈(0,2)時,f(x)≤
.
(1)求f(1)的值;
(2)證明:a>0,c>0;
(3)當x∈[-1,1]時,函數(shù)g(x)=f(x)-mx (x∈R)是單調(diào)函數(shù),求證:m≤0或m≥1.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com