(12分)已知橢圓C:
(a>b>0)的一個頂點(diǎn)為A(2,0),離心率為
,直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M、N.
①求橢圓C的方程.
②當(dāng)⊿AMN的面積為
時,求k的值.
①
.②k=±1.
解析試題分析:(Ⅰ)根據(jù)橢圓一個頂點(diǎn)為A (2,0),離心率為
,可建立方程組,從而可求橢圓C的方程;
(Ⅱ)直線y=k(x-1)與橢圓C聯(lián)立 y=k(x-1)與
,消元可得(1+2k2)x2-4k2x+2k2-4=0,從而可求|MN|,A(2,0)到直線y=k(x-1)的距離,利用△AMN的面積,可求k的值.
解:① 由題意得 a=2
=
,
,
解得b=
.所以橢圓C的方程為
.
由② y=k(x-1), 得 ![]()
![]()
設(shè)點(diǎn)M、N的坐標(biāo)分別為
則![]()
所以![]()
又因?yàn)辄c(diǎn)A(2,0)到直線y=k(x-1)的距離d=![]()
所以⊿AMN的面積為s=
∣MN∣.d=
=
,
解得k=±1.
考點(diǎn):本試題主要考查了橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查三角形面積的計(jì)算。
點(diǎn)評:解決該試題的關(guān)鍵是正確求出|MN|,通過設(shè)直線與圓錐曲線聯(lián)立方程組得到韋達(dá)定理表示得到線段的長度。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知拋物線
的焦點(diǎn)為
,準(zhǔn)線為
,過
上一點(diǎn)P作拋物線的兩切線,切點(diǎn)分別為A、B,
(1)求證:
;
(2)求證:A、F、B三點(diǎn)共線;
(3)求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
斜率為k的直線過點(diǎn)P(0,1),與雙曲線
交于A,B兩點(diǎn).
(1)求實(shí)數(shù)k的取值范圍;
(2)若以AB為直徑的圓過坐標(biāo)原點(diǎn),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓
的左、右頂點(diǎn)分別為
、
,點(diǎn)
在橢圓上且異于
、
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(1)若直線
與
的斜率之積為
,求橢圓的離心率;
(2)對于由(1)得到的橢圓
,過點(diǎn)
的直線
交
軸于點(diǎn)
,交
軸于點(diǎn)
,若
,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的焦點(diǎn)F1(-
,0)和F2(
,0),長軸長6。
(1)求橢圓C的標(biāo)準(zhǔn)方程。
(2)設(shè)直線
交橢圓C于A、B兩點(diǎn),求線段AB的中點(diǎn)坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
為雙曲線
的左、右焦點(diǎn).
(Ⅰ)若點(diǎn)
為雙曲線與圓![]()
的一個交點(diǎn),且滿足
,求此雙曲線的離心率;
(Ⅱ)設(shè)雙曲線的漸近線方程為
,
到漸近線的距離是
,過
的直線交雙曲線于A,B兩點(diǎn),且以AB為直徑的圓與
軸相切,求線段AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
設(shè)直線
與拋物線
交于不同兩點(diǎn)A、B,F(xiàn)為拋物線的焦點(diǎn)。
(1)求
的重心G的軌跡方程;
(2)如果
的外接圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)已知
,且點(diǎn)A
和點(diǎn)B
都在橢圓
內(nèi)部,
(1)請列出有序數(shù)組
的所有可能結(jié)果;
(2)記“使得
成立的
”為事件A,求事件A發(fā)生的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分) 如圖,已知拋物線與坐標(biāo)軸分別交于A
、B
、C
三點(diǎn),過坐標(biāo)原點(diǎn)O的直線
與拋物線交于M、N兩點(diǎn).分別過點(diǎn)C、D
作平行于
軸的直線
、
.(1)求拋物線對應(yīng)的二次函數(shù)的解析式;
(2)求證以O(shè)N為直徑的圓與直線
相切;
(3)求線段MN的長(用
表示),并證明M、N兩
點(diǎn)到直線
的距離之和等于線段MN的長.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com