斜率為k的直線過點P(0,1),與雙曲線
交于A,B兩點.
(1)求實數(shù)k的取值范圍;
(2)若以AB為直徑的圓過坐標(biāo)原點,求k的值.
(1)
.(2)
;
解析試題分析: (1)第一問中利用直線方程與雙曲線方程聯(lián)立方程組,結(jié)合判別式得到范圍。
(2)在第一問的基礎(chǔ)上,結(jié)合韋達(dá)定理和向量的垂直問題得到。
解:(1)由
.--------------------6分
(2)
,![]()
---------------------------12分
考點:本題主要考查了直線與雙曲線的位置關(guān)系的運用。
點評:解決該試題的關(guān)鍵是能聯(lián)立方程組,結(jié)合韋達(dá)定理來表述出根與系數(shù)的關(guān)系,進(jìn)而利用向量的數(shù)量積為零,得到參數(shù)k的值。
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
分別是橢圓的
左,右焦點。
(1)若
是第一象限內(nèi)該橢圓上的一點,且
·
=![]()
求點
的坐標(biāo)。
(2)設(shè)過定點
的直線與橢圓交于不同的兩點
,且
為銳角(其中O為坐標(biāo)原點),求直線
的斜率
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系
中,點
到兩點
的距離之和為4,設(shè)點
的軌跡為
,直線
與
交于
兩點。
(Ⅰ)寫出
的方程; (Ⅱ)若
,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若橢圓
的離心率為
,焦點在
軸上,且長軸長為10,曲線
上的點與橢圓
的兩個焦點的距離之差的絕對值等于4.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)求曲線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知焦點在
軸上的雙曲線C的兩條漸近線過坐標(biāo)原點,且兩條漸近線與以點
為圓心,1為半徑的圓相切,又知C的一個焦點與A關(guān)于直線
對稱.
(1)求雙曲線C的方程;
(2)設(shè)直線
與雙曲線C的左支交于A,B兩點,另一直線
經(jīng)過M(-2,0)及AB的中點,求直線
在
軸上的截距b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分) 已知
均在橢圓
上,直線
分別過橢圓的左、右焦點
當(dāng)
時,有![]()
(1)求橢圓
的方程
(2)設(shè)
是橢圓
上的任一點,
為圓
的任一條直徑,求
的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知橢圓
.過點
作圓
的切線
交橢圓
于
,
兩點.
(1)求橢圓
的焦點坐標(biāo)和離心率;
(2)將
表示為
的函數(shù),并求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知橢圓C:
(a>b>0)的一個頂點為A(2,0),離心率為
,直線y=k(x-1)與橢圓C交于不同的兩點M、N.
①求橢圓C的方程.
②當(dāng)⊿AMN的面積為
時,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)橢圓
:
的兩個焦點為
,點
在橢圓
上,且
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若直線
過圓
的圓心,交橢圓
于
兩點,且
關(guān)于點
對稱,求直線
的方程。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com