已知橢圓C的方程為
=1(a>b>0),雙曲線
=1的兩條漸近線為l1、l2,過(guò)橢圓C的右焦點(diǎn)F作直線l,使l⊥l1.又l與l2交于P點(diǎn),設(shè)l與橢圓C的兩個(gè)交點(diǎn)由上至下依次為A、B(如圖).![]()
(1)當(dāng)l1與l2夾角為60°,雙曲線的焦距為4時(shí),求橢圓C的方程;
(2)當(dāng)
=λ
,求λ的最大值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓
的方程為
,離心率為
,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線
的方程為
,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
(1)求橢圓
和拋物線
的方程;
(2)過(guò)點(diǎn)F的直線交拋物線
于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知
的值.
(3)直線
交橢圓
于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足
(O為原點(diǎn)),若點(diǎn)S滿足
,判定點(diǎn)S是否在橢圓
上,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
:
的離心率為
,過(guò)橢圓
右焦點(diǎn)
的直線
與橢圓
交于點(diǎn)
(點(diǎn)
在第一象限).
(1)求橢圓
的方程;
(2)已知
為橢圓
的左頂點(diǎn),平行于
的直線
與橢圓相交于
兩點(diǎn).判斷直線
是否關(guān)于直線
對(duì)稱,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓E:
=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=
.過(guò)F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長(zhǎng)為8.![]()
(1)求橢圓E的方程;
(2)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過(guò)點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,已知橢圓
=1的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F.設(shè)過(guò)點(diǎn)T(t,m)的直線TA、TB與橢圓分別交于點(diǎn)M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.![]()
(1)設(shè)動(dòng)點(diǎn)P滿足PF2-PB2=4,求點(diǎn)P的軌跡;
(2)設(shè)x1=2,x2=
,求點(diǎn)T的坐標(biāo);
(3)設(shè)t=9,求證:直線MN必過(guò)x軸上的一定點(diǎn)(其坐標(biāo)與m無(wú)關(guān)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,過(guò)拋物線C:y2=4x上一點(diǎn)P(1,-2)作傾斜角互補(bǔ)的兩條直線,分別與拋物線交于點(diǎn)A(x,y1),B(x2,y2).![]()
(1)求y1+y2的值;
(2)若y1≥0,y2≥0,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的中點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,離心率等于
,它的一個(gè)頂點(diǎn)恰好是拋物線
的焦點(diǎn).![]()
(1)求橢圓C的方程;
(2)己知點(diǎn)P(2,3),Q(2,-3)在橢圓上,點(diǎn)A、B是橢圓上不同的兩個(gè)動(dòng)點(diǎn),且滿足
APQ=
BPQ,試問(wèn)直線AB的斜率是否為定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xoy中,以點(diǎn)P為圓心的圓與圓x2+y2-2y=0外切且與x軸相切(兩切點(diǎn)不重合).
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若直線mx一y+2m+5=0(m∈R)與點(diǎn)P的軌跡交于A、B兩點(diǎn),問(wèn):當(dāng)m變化時(shí),以線段AB為直徑的圓是否會(huì)經(jīng)過(guò)定點(diǎn)?若會(huì),求出此定點(diǎn);若不會(huì),說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:
的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線
相切。
(1)求橢圓C的方程;
(2)若過(guò)點(diǎn)M(2,0)的直線與橢圓C交于兩點(diǎn)A和B,設(shè)P為橢圓上一點(diǎn),且滿足![]()
·
(O為坐標(biāo)原點(diǎn)),當(dāng)
時(shí),求實(shí)數(shù)t取值范圍。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com