中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2012•安徽模擬)已知實數x,y滿足|2x+y+1|≤|x+2y+2|,且|y|≤1,則z=2x+y的最大值為(  )
分析:先根據約束條件畫出可行域,設z=2x+y,再利用z的幾何意義求最值,只需求出直線z=2x+y過可行域內的角點時,從而得到z=2x+y的最大值即可.
解答:解:先根據約束條件|2x+y+1|≤|x+2y+2|,化得:
2x+y+1≥0
x+2y+2≥0
x-y-1≤0
2x+y+1≥0
x+2y+2<0
x+y+1≤0
2x+y+1<0
x+2y+2≥0
x+y+1≥0
2x+y+1<0
x+2y+2<0
x-y-1≥0
,又|y|≤1,
畫出可行域,如圖陰影部分,
設z=2x+y,
將z的值轉化為直線z=2x+y在y軸上的截距,
當直線z=2x+y經過點A(2,1)時,z最大,
最大值為:5.
故選C.
點評:本題主要考查了用平面區域二元一次不等式組,以及簡單的轉化思想和數形結合的思想,屬中檔題.目標函數有唯一最優解是我們最常見的問題,這類問題一般要分三步:畫出可行域、求出關鍵點、定出最優解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•安徽模擬)在復平面內,復數z=
1+i
i-2
對應的點位于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•安徽模擬)定義在R上的奇函數f(x)滿足:x≤0時f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,則f(2)=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•安徽模擬)(理)若變量x,y滿足約束條件
x+y-3≤0
x-y+1≥0
y≥1
,則z=|y-2x|的最大值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•安徽模擬)下列說法不正確的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•安徽模擬)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及當取最大值時x的取值集合.
(2)在三角形ABC中,a,b,c分別是角A,B,C所對的邊,對定義域內任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步練習冊答案