如圖,四棱錐S-ABCD中,ABCD為矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=
AD,E為CD上一點,且CE=3DE.![]()
(1)求證:AE⊥平面SBD.
(2)M,N分別為線段SB,CD上的點,是否存在M,N,使MN⊥CD且MN⊥SB,若存在,確定M,N的位置;若不存在,說明理由.
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,側棱SA
底面ABCD,且SA=2,AD=DC=1![]()
(1)若點E在SD上,且
證明:
平面
;
(2)若三棱錐S-ABC的體積
,求面SAD與面SBC所成二面角的正弦值的大小
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐PABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=2,BD=2
,E是PB上任意一點.![]()
(1)求證:AC⊥DE;
(2)已知二面角APBD的余弦值為
,若E為PB的中點,求EC與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,四棱錐P—ABCD中,AB
AD,CD
AD,PA
底面ABCD,PA=AD=CD=2AB=2,M為PC的中點。![]()
(1)求證:BM∥平面PAD;
(2)在側面PAD內找一點N,使MN
平面PBD;
(3)求直線PC與平面PBD所成角的正弦。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,四邊形
為直角梯形,
,
,
為等邊三角形,且平面
平面
,
,
為
中點.![]()
(1)求證:![]()
;
(2)求平面
與平面
所成的銳二面角的余弦值;
(3)在
內是否存在一點
,使
平面
,如果存在,求
的長;如果不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com