中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(理)如圖所示,在四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD,點 E在線段PC上,設
PEEC
,PA=AB.
(I)證明:BD⊥PC;
(Ⅱ)當λ為何值時,PC⊥平面BDE;
(Ⅲ)在(Ⅱ)的條件下,求二面角B-PC-A的平面角大小.
分析:(Ⅰ)要證BD⊥PC,只要證BD垂直于PC所在的平面PAC即可,由已知底面ABCD為正方形,PA⊥平面ABCD,利用線面垂直的判定即可得證;
(Ⅱ)由PC⊥平面BDE,得到PC⊥OE,利用直角三角形相似即可求出EC,從而求得λ的值;
(Ⅲ)由(Ⅱ)可知∠BEO為二面角B-PC-A的平面角,直接解直角三角形即可得到答案.
解答:(Ⅰ)證明,如圖,
∵底面ABCD為正方形,∴AC⊥BD,又PA⊥平面ABCD,∴PA⊥BD
∵PA∩AC=A,∴BD⊥面PAC,∴BD⊥PC;
(Ⅱ)解:若PC⊥平面BDE,則PC⊥OE,
∴△PAC∽△OEC,
∵底面ABCD為正方形,PA=AB,
設PA=AB=a,則AC=
2
a,OC=
2
2
a
PC=
a2+2a2
=
3
a

AC
PC
=
EC
OC
,即
2
a
3
a
=
EC
2
2
a
,∴EC=
3
3
a

λ=
PE
EC
=
PC-EC
EC
=
2
3
3
a
3
3
a
=2

所以,當λ等于2時,PC⊥平面BDE;
(Ⅲ)解:當PC⊥平面BDE時,∠BEO為二面角B-PC-A的平面角,
在Rt△CEO中,OE=
OC2-EC2
=
(
2
2
a)2-(
3
3
a)2
=
6
6
a

在Rt△BOE中,tan∠BEO=
BO
OE
=
2
2
a
6
6
a
=
3

所以∠BEO=
π
3
點評:本題考查了直線與平面垂直的判定與性質,考查了二面角的平面角的求法,考查了學生的空間想象和思維能力,是中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(09年濱州一模理)(12分)

如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,平面PBC⊥底面ABCD,且PB=PC=.

(Ⅰ)求證:AB⊥CP;

(Ⅱ)求點到平面的距離;

(Ⅲ)設面與面的交線為,求二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年四校聯考二理) 如圖所示,設點F坐標為 (1 , 0 ),點Py軸上運動,點Mx軸運動上,其中?=0,若動點N滿足條件 

         (Ⅰ)求動點N的軌跡的方程;

(Ⅱ)過點F(1 , 0 )的直線l分別與曲線交于AB兩點和C、D兩點,若,試求四邊形ACBD的面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年內江市三模理)  如圖所示是2008年北京奧運會的會徽,其中的“中國印”由四個不連通的色塊組成,可以用線段在不穿越其它色塊的條件下將其中兩個色塊連接(如同架橋),如果用三條線段將四個色塊連接起來,不同的連接方法有_______種。

A、               B、              C、             D、

 

 

 

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年黑龍江省龍東南七校聯考高一(下)期末數學試卷(解析版) 題型:填空題

(理)如圖所示,在四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD,點 E在線段PC上,設,PA=AB.
(I)證明:BD⊥PC;
(Ⅱ)當λ為何值時,PC⊥平面BDE;
(Ⅲ)在(Ⅱ)的條件下,求二面角B-PC-A的平面角大小.

查看答案和解析>>

同步練習冊答案