函數(shù)
.
(1)求函數(shù)
的極值;
(2)設(shè)函數(shù)
,對
,都有
,求實(shí)數(shù)m的取值范圍.
(1)
;(2)
.
解析試題分析:解題思路:(1)求導(dǎo),令
得
,列表即可極值;(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a0/2/1nazl4.png" style="vertical-align:middle;" />,都有
,所以只需
即可,即求
的最值.規(guī)律總結(jié):(1)利用導(dǎo)數(shù)求函數(shù)的極值的步驟:①求導(dǎo);②解
,得分界點(diǎn);③列表求極值點(diǎn)及極值;(2)恒成立問題要轉(zhuǎn)化為求函數(shù)的最值問題.注意點(diǎn):因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a0/2/1nazl4.png" style="vertical-align:middle;" />,都有
,所以只需
即可.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2e/e/lvmxf1.png" style="vertical-align:middle;" />,所以
,
令
,解得
,或
,則x ![]()
-2 ![]()
2 ![]()
![]()
+ 0 - 0 + ![]()
↗ ![]()
↘ ![]()
↗
故當(dāng)
時(shí),
有極大值,極大值為
;
當(dāng)
時(shí),
有極小值,極小值為
.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a0/2/1nazl4.png" style="vertical-align:middle;" />,都有
,所以只需
即可.
由(1)知:函數(shù)
在區(qū)間
上的最小值![]()
,
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=![]()
-ax(a∈R,e為自然對數(shù)的底數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,函數(shù)g(x)=(x-m)f(x)-![]()
+x2+x在區(qū)間(0,+
)上為增函數(shù),求整數(shù)m 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(2)當(dāng)
時(shí),討論
的單調(diào)性.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中a,b∈R
(1)當(dāng)a=3,b=-1時(shí),求函數(shù)f(x)的最小值;
(2)若曲線y=f(x)在點(diǎn)(e,f(e))處的切線方程為2x-3y-e=0(e=2.71828 為自然對數(shù)的底數(shù)),求a,b的值;
(3)當(dāng)a>0,且a為常數(shù)時(shí),若函數(shù)h(x)=x[f(x)+lnx]對任意的x1>x2≥4,總有
成立,試用a表示出b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,函數(shù)
.
⑴當(dāng)
時(shí),函數(shù)
的圖象與函數(shù)
的圖象有公共點(diǎn),求實(shí)數(shù)
的最大值;
⑵當(dāng)
時(shí),試判斷函數(shù)
的圖象與函數(shù)
的圖象的公共點(diǎn)的個(gè)數(shù);
⑶函數(shù)
的圖象能否恒在函數(shù)
的上方?若能,求出
的取值范圍;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax2+bln x在x=1處有極值
.
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
用白鐵皮做一個(gè)平底、圓錐形蓋的圓柱形糧囤,糧囤容積為
(不含錐形蓋內(nèi)空間),蓋子的母線與底面圓半徑的夾角為
,設(shè)糧囤的底面圓半徑為R
,需用白鐵皮的面積記為
(不計(jì)接頭等)。
(1)將
表示為R的函數(shù);
(2)求
的最小值及對應(yīng)的糧囤的總高度。(含圓錐頂蓋)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)![]()
,已知曲線
在點(diǎn)
處的切線方程是
.
(1)求
的值;并求出函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)
在區(qū)間
上的最值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com