中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(12分)某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數中等可能隨機產生
(I)分別求出按程序框圖正確編程運行時輸出y的值為i的概率pi(i=1,2,3);
(II)甲乙兩同學依據自己對程序框圖的理解,各自編程寫出程序重復運行n次后,統計記錄輸出y的值為i(i=1,2,3)的頻數,以下是甲乙所作頻數統計表的部分數據.
甲的頻數統計圖(部分)

運行次數n
輸出y的值為1的頻數
輸出y的值為2的頻數
輸出y的值為3的頻數
30
14
6
10




2100
1027
376
697
乙的頻數統計圖(部分)
運行次數n
輸出y的值為1的頻數
輸出y的值為2的頻數
輸出y的值為3的頻數
30
12
11
7




2100
1051
696
353
當n=2100時,根據表中的數據,分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分數表示),并判斷兩位同學中哪一位所編程序符合要求的可能系較大;
(III)將按程序擺圖正確編寫的程序運行3次,求輸出y的值為2的次數ξ的分布列及數學期望.

(I)輸出的y值為1的概率為,輸出的y值為2的概率為,輸出的y值為3的概率為
(II)乙同學所編程序符合算法要求的可能性較大(III)1

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

現有甲、乙兩個靶.某射手向甲靶射擊兩次,每次命中的概率為,每命中一次得1分,沒有命中得0分;向乙靶射擊一次,命中的概率為,命中得2分,沒有命中得0分.該射手每次射擊的結果相互獨立.假設該射手完成以上三次射擊.
(I)求該射手恰好命中兩次的概率;
(II)求該射手的總得分的分布列及數學期望;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某經銷商試銷A、B兩種商品一個月(30天)的記錄如下:

日銷售量(件)
0
1
2
3
4
5
商品A的頻數
3
5
7
7
5
3
商品B的頻數
4
4
6
8
5
3
若售出每種商品1件均獲利40元,用表示售出A、B商品的日利潤值(單位:元).將頻率視為概率.
(Ⅰ)設兩種商品的銷售量互不影響,求兩種商品日獲利值均超過100元的概率;
(Ⅱ)由于某種原因,該商家決定只選擇經銷A、B商品的一種,你認為應選擇哪種商品,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖是在豎直平面內的一個“通道游戲”.圖中豎直線段和斜線段都表示通道,并且在交點處相遇,若豎直線段有一條的為第一層,有二條的為第二層, ,依次類推.現有一顆小彈子從第一層的通道里向下運動,若在通道的分叉處,小彈子以相同的概率落入每個通道.記小彈子落入第層第個豎直通道(從左至右)的概率為,某研究性學習小組經探究發現小彈子落入第層的第個通道的次數服從二項分布,請你解決下列問題.

(Ⅰ)試求的值,并猜想的表達式;(不必證明)
(Ⅱ)設小彈子落入第6層第個豎直通道得到分數為,其中,試求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲乙丙三人商量周末去玩,甲提議去市中心逛街,乙提議去城郊覓秋,丙表示隨意。最終,商定以拋硬幣的方式決定結果。規則是:由丙拋擲硬幣若干次,若正面朝上則甲得一分乙得零分,反面朝上則乙得一分甲得零分,先得4分者獲勝,三人均執行勝者的提議.記所需拋幣次數為.
⑴求=6的概率;
⑵求的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

按照新課程的要求, 高中學生在每學期都要至少參加一次社會實踐活動(以下簡稱活動). 該校高2010級一班50名學生在上學期參加活動的次數統計如圖所示.
(I)求該班學生參加活動的人均次數;(II)從該班中任意選兩名學生,求他們參加活動次數恰好相等的概率
(III)從該班中任選兩名學生,用表示這兩人參加活動次數之差的絕對值,求隨機變量的分布列及數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

先后隨機投擲2枚正方體骰子,其中表示第枚骰子出現的點數,表示第枚骰子出現的點數. 
(Ⅰ)求點在直線上的概率;  
(Ⅱ)求點滿足的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

每一個父母都希望自己的孩子能升上比較理想的中學,于是就催生了“擇校熱”,這樣“擇!钡慕Y果就導致了學生在路上耽誤的時間增加了.若某生由于種種原因,每天只能6:15騎車從家出發到學校,途經5個路口,這5個路口將家到學校分成了6個路段,每個路段的騎車時間是10分鐘(通過路口的時間忽略不計),假定他在每個路口遇見紅燈的概率均為,且該生只在遇到紅燈或到達學校才停車.對每個路口遇見紅燈的情況統計如下:

紅燈
1
2
3
4
5
等待時間(秒)
60
60
90
30
90
(1)設學校規定7:20后(含7:20)到校即為遲到,求這名學生遲到的概率;
(2)設表示該學生第一次停車時已經通過的路口數,求它的分布列與期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲、乙兩人各進行3次射擊,甲每次擊中目標的概率為,乙每次擊中目標的概率為
求:(1)乙至少擊中目標2次的概率;
(2)乙恰好比甲多擊中目標2次的概率

查看答案和解析>>

同步練習冊答案