中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
用數學歸納法證明不等式(n≥2且n∈N*).

(1)當n=2時,不等式的左邊為___________;

(2)當n=3時,不等式的左邊為___________;

(3)第二步從“k”到“k+1”的證明中,不等式左邊增添的代數式是___________

思路解析:(1)當n=2時,不等式的左邊為+(兩項之和);

(2)當n=3時,不等式的左邊為++(三項之和);

……

(3)當n=k時,不等式的左邊為(k項之和);

而當n=k+1時,,則從“k”到“k+1”的證明中,不等式左邊增添的代數式為.

答案:    

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

用數學歸納法證明不等式:
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
>1(n∈N*且n>1).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(n)=1+
1
2
+
1
3
+…+
1
n
 (n∈N*),用數學歸納法證明不等式f(2n)>
n
2
時,f(2k+1)比f(2k)多的項數是
2k
2k

查看答案和解析>>

科目:高中數學 來源: 題型:

用數學歸納法證明不等式
1
n+1
+
1
n+2
+…+
1
n+n
13
24
的過程中,由“k推導k+1”時,不等式的左邊增加了(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

用數學歸納法證明不等式1+
1
2
+
1
4
+…+
1
2n-1
127
64
(n∈N*)成立,其初始值至少應取
8
8

查看答案和解析>>

科目:高中數學 來源: 題型:

用數學歸納法證明不等式2n>n2時,第一步需要驗證n0=(  )時,不等式成立.

查看答案和解析>>

同步練習冊答案