中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
對于函數f(x)與g(x)和區間D,如果存在唯一x0∈D,使|f(x0)-g(x0)|≤2,則稱函數f(x)與g(x)在區間D上的“友好函數”.現給出兩個函數:則函數f(x)與g(x)在區間(0,+∞)上為“友好函數”的是
.(填正確的序號)
①f(x)=x2,g(x)=2x-4; 
②f(x)=2
x
,g(x)=x+3;
③f(x)=e-x,g(x)=-
1
x
;
④f(x)=lnx,g(x)=x+1.
分析:對照新定義,利用配方法、導數法可確定函數的值域,由此,就可以得出結論.
解答:解:對于①,f(x)-g(x)=x2-2x+4=(x-1)2+3≥3,
∴不存在x0∈(0,+∞),使|f(x0)-g(x0)|≤2,∴①不滿足
對于②,g(x)-f(x)=x-2
x
+3=(
x
-1)2+2
≥2,當且僅當x=1時,|g(x)-f(x)|≤2.∴②滿足;
對于③,h(x)=f(x)-g(x)=e-x+
1
x
,h′(x)=-e-x-
1
x2
<0,∴函數h(x)在(0,+∞)上單調減,
∴x→0,h(x)→+∞,x→+∞,h(x)→0,使|f(x0)-g(x0)|≤2的x0不唯一,∴③不滿足;
對于④,h(x)=g(x)-f(x)=x-lnx-1(x>0),h′(x)=1-
1
x
,
令h′(x)>0,可得x>1,令h′(x)<0,可得0<x<1,
∴x=1時,函數取得極小值,且為最小值,最小值為h(1)=0,∴g(x)-f(x)≥0,
使|f(x0)-g(x0)|≤2的x0不唯一,∴④不滿足;
故答案為:②
點評:本題重點考查對新定義的理解與運用,考查配方法、導數法求函數的值域,有一定的綜合性.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•杭州一模)對于函數 f(x)與 g(x)和區間E,如果存在x0∈E,使|f(x0)-g(x0)|<1,則我們稱函數 f(x)與 g(x)在區間E上“互相接近”.那么下列所給的兩個函數在區間(0,+∞)上“互相接近”的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

給定區間D,對于函數f(x)與g(x)及任意x1,x2∈D(其中x1
x
 
2
),若不等式f(x1)-f(x2)>g(x1)-g(x2)恒成立,則稱函數f(x)相對于函數g(x)在區間D上是“漸先函數”.已知函數f(x)=ax2+ax相對于函數g(x)=2x-3在區間[a,a+2]上是漸先函數,則實數a的取值范圍是
a≤
-5-
41
4
a≥
-1+
17
2
a≤
-5-
41
4
a≥
-1+
17
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)將函數y=f(x)圖象向右平移一個單位即可得到函數y=φ(x)的圖象,試寫出y=φ(x)的解析式及值域;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x)與g(x)和區間D,如果存在x0∈D,使|f(x0)-g(x0)|≤1,則稱x0是函數f(x)與g(x)在區間D上的“友好點”.現給出兩個函數:
①f(x)=x2,g(x)=2x-2;
②f(x)=
x
,g(x)=x+2;
③f(x)=e-x,g(x)=-
1
x
;
④f(x)=lnx,g(x)=x,
則在區間(0,+∞)上的存在唯一“友好點”的是( 。
A、①②B、③④C、②③D、①④

查看答案和解析>>

同步練習冊答案