中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=lnx-ax(a>0).
(I)當a=2時,求f(x)的單調區間與極值;
(Ⅱ)若對于任意的x∈(0,+),都有f(x)<0,求a的取值范圍.
(I)單調遞增區間為,遞減區間為;極大值為,無極小值;
(Ⅱ)

試題分析:(I)先求導再討論其單調性,根據單調性可求其極值。(Ⅱ)先求導再討論其單調性,根據單調性可求其最值。對于任意的x∈(0,+),都有f(x)<0,即
試題解析:(I)當時,,所以
時,,當時,
所以函數的單調遞增區間為,遞減區間為
所以當時函數取得極大值為,無極小值。
(Ⅱ)因為
時,,當時,
所以函數上單調遞增,在上單調遞減。
所以當時,函數取得最大值
因為對于任意的x∈(0,+),都有f(x)<0,所以,即,可得
所以a的取值范圍為
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)若函數存在極大值和極小值,求的取值范圍;
(2)設分別為的極大值和極小值,其中的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過80,已知貨車每小時的運輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的倍,固定成本為a元.
(1)將全程運輸成本y(元)表示為速度v()的函數,并指出這個函數的定義域;
(2)為了使全程運輸成本最小,貨車應以多大的速度行駛?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數為自然對數的底數).
(1)求函數上的單調區間;
(2)設函數,是否存在區間,使得當時函數的值域為,若存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(1)求的極值點;
(2)對任意的,記上的最小值為,求的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知P()為函數圖像上一點,O為坐標原點,記直線OP的斜率
(Ⅰ)求函數的單調區間;
(Ⅱ)設,求函數的最小值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數,且,則當時, 的取值范圍是  (   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

定義在R上的函數f(x)滿足(x+2)f’(x)<0,又a=f(log0.53),b=f(()0.3),c=f(ln3),則(     )
A.a<b<cB.b<c<aC.c<a<bD.c< b<a

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知,現給出如下結論:
;②;③;④.
其中正確結論的序號為(   )
A.①③B.①④C.②④D.②③

查看答案和解析>>

同步練習冊答案