中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知a∈R且a≠1,求函數f(x)=在[1,4]上的最值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

若函數f(x)=sin2ax-sinaxcosax(a>0)的圖象與直線y=m相切,相鄰切點之間的距離為.
(1)求m和a的值;
(2)若點A(x0,y0)是y=f(x)圖象的對稱中心,且x0,求點A的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=lnx-ax2+(2-a)x.
(1)討論f(x)的單調性;
(2)設a>0,證明:當0<x<時,f>f
(3)若函數y=f(x)的圖象與x軸交于A、B兩點,線段AB中點的橫坐標為x0,證明:<0.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設f(x)是定義在R上的奇函數,且對任意實數x,恒有f(x+2)=-f(x),當x∈[0,2]時,f(x)=2x-x2.
(1)求證:f(x)是周期函數;
(2)當x∈[2,4]時,求f(x)的解析式;
(3)計算f(0)+f(1)+f(2)+…+f(2014)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

判斷函數f(x)=ex在區間(0,+∞)上的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ex-e-x(x∈R且e為自然對數的底數).
(1)判斷函數f(x)的奇偶性與單調性;
(2)是否存在實數t,使不等式f(x-t)+f(x2-t2)≥0對一切x都成立?若存在,求出t;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為常數,且).
(1)當時,求函數的最小值(用表示);
(2)是否存在不同的實數使得,并且,若存在,求出實數的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)=a為常數且a∈(0,1).
(1)當a=時,求f
(2)若x0滿足f[f(x0)]=x0,但f(x0)≠x0,則稱x0為f(x)的二階周期點.證明函數f(x)有且僅有兩個二階周期點,并求二階周期點x1,x2
(3)對于(2)中的x1,x2,設A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),記△ABC的面積為S(a),求S(a)在區間[]上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數是偶函數
(1)求k的值;
(2)若函數的圖象與直線沒有交點,求b的取值范圍;
(3)設,若函數的圖象有且只有一個公共點,求實數的取值范圍

查看答案和解析>>

同步練習冊答案