已知橢圓
:
,左、右兩個焦點分別為
、
,上頂點
,
為正三角形且周長為6.
(1)求橢圓
的標準方程及離心率;
(2)
為坐標原點,
是直線
上的一個動點,求
的最小值,并求出此時點
的坐標.
科目:高中數學 來源: 題型:解答題
中心在坐標原點,焦點在
軸上的橢圓的離心率為
,且經過點
。若分別過橢圓的左右焦點
、
的動直線
、
相交于P點,與橢圓分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率
、
、
、
滿足
.![]()
(1)求橢圓的方程;
(2)是否存在定點M、N,使得
為定值.若存在,求出M、N點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線和橢圓都經過點
,它們在
軸上有共同焦點,橢圓的對稱軸是坐標軸,拋物線的頂點為坐標原點.
(1)求這兩條曲線的方程;
(2)對于拋物線上任意一點
,點
都滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
雙曲線
=1(a>0,b>0)的離心率為2,坐標原點到直線AB的距離為
,其中A(0,-b),B(a,0).
(1)求雙曲線的標準方程;
(2)設F是雙曲線的右焦點,直線l過點F且與雙曲線的右支交于不同的兩點P、Q,點M為線段PQ的中點.若點M在直線x=-2上的射影為N,滿足
·
=0,且|
|=10,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線
與橢圓
有相同的焦點,點
、
分別是橢圓的右、右頂點,若橢圓經過點
.
(1)求橢圓的方程;
(2)已知
是橢圓的右焦點,以
為直徑的圓記為
,過點
引圓
的切線,求此切線的方程;
(3)設
為直線
上的點,
是圓
上的任意一點,是否存在定點
,使得
?若存在,求出定點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
直線
與橢圓
交于
,
兩點,已知![]()
,![]()
,若
且橢圓的離心率
,又橢圓經過點
,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線
過橢圓的焦點
(
為半焦距),求直線
的斜率
的值;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
直線
與橢圓
交于
,
兩點,已知![]()
,![]()
,若
且橢圓的離心率
,又橢圓經過點
,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線
過橢圓的焦點
(
為半焦距),求直線
的斜率
的值;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
若橢圓
的中心在原點,焦點在
軸上,短軸的一個端點與左右焦點
、
組成一個正三角形,焦點到橢圓上的點的最短距離為
.
(1)求橢圓
的方程;
(2)過點
作直線
與橢圓
交于
、
兩點,線段
的中點為
,求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,設拋物線方程為
,
為直線
上任意一點,過
引拋物線的切線,切點分別為
.![]()
(1)求證:
三點的橫坐標成等差數列;
(2)已知當
點的坐標為
時,
.求此時拋物線的方程。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com