中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知橢圓,左、右兩個焦點分別為、,上頂點,為正三角形且周長為6.
(1)求橢圓的標準方程及離心率;
(2)為坐標原點,是直線上的一個動點,求的最小值,并求出此時點的坐標.

(1), 離心率(2)

解析試題分析:解:(Ⅰ)解:由題設得           2分
解得: …… 3分
的方程為. …… 5分   離心率      6分
(2)直線的方程為, 7分
設點關于直線對稱的點為,則
(聯立方程正確,可得分至8分)
所以點的坐標為        9分
,,…… 10分
的最小值為    11分
直線的方程為 即    12分
,所以此時點的坐標為   14分
考點:直線與橢圓的位置關系
點評:解決的關鍵是通過其簡單幾何性質以及直線于橢圓方程的聯立方程組來求解,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

中心在坐標原點,焦點在軸上的橢圓的離心率為,且經過點。若分別過橢圓的左右焦點、的動直線、相交于P點,與橢圓分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率、、滿足

(1)求橢圓的方程;
(2)是否存在定點M、N,使得為定值.若存在,求出M、N點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題


已知拋物線和橢圓都經過點,它們在軸上有共同焦點,橢圓的對稱軸是坐標軸,拋物線的頂點為坐標原點.
(1)求這兩條曲線的方程;
(2)對于拋物線上任意一點,點都滿足,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

雙曲線=1(a>0,b>0)的離心率為2,坐標原點到直線AB的距離為,其中A(0,-b),B(a,0).
(1)求雙曲線的標準方程;
(2)設F是雙曲線的右焦點,直線l過點F且與雙曲線的右支交于不同的兩點P、Q,點M為線段PQ的中點.若點M在直線x=-2上的射影為N,滿足·=0,且||=10,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知雙曲線與橢圓有相同的焦點,點、分別是橢圓的右、右頂點,若橢圓經過點
(1)求橢圓的方程;
(2)已知是橢圓的右焦點,以為直徑的圓記為,過點引圓的切線,求此切線的方程;
(3)設為直線上的點,是圓上的任意一點,是否存在定點,使得?若存在,求出定點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

直線與橢圓交于,兩點,已知
,,若且橢圓的離心率,又橢圓經過點,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點為半焦距),求直線的斜率的值;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

直線與橢圓交于,兩點,已知
,若且橢圓的離心率,又橢圓經過點,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點為半焦距),求直線的斜率的值;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若橢圓的中心在原點,焦點在軸上,短軸的一個端點與左右焦點組成一個正三角形,焦點到橢圓上的點的最短距離為.
(1)求橢圓的方程;
(2)過點作直線與橢圓交于、兩點,線段的中點為,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,設拋物線方程為為直線上任意一點,過引拋物線的切線,切點分別為

(1)求證:三點的橫坐標成等差數列;
(2)已知當點的坐標為時,.求此時拋物線的方程。

查看答案和解析>>

同步練習冊答案