中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知定義在R上的奇函數y=f(x)滿足f(2+x)=f(2-x),當-2≤x<0時,f(x)=2x,若an=f(n)(n∈N*),則a2011=
-
1
2
-
1
2
分析:先確定函數是周期為8的周期函數,進而可得a2011=-f(-1),利用當-2≤x<0時,f(x)=2x,即可求得結論.
解答:解:∵f(2+x)=f(2-x),∴f(4+x)=f(-x),
∵f(x)是奇函數,∴f(-x)=-f(x),
∴f(4+x)=-f(x),
∴f(8+x)=f(x),
∴函數y=f(x)是周期為8的周期函數
∴a2011=f(2011)=f(251×8+3)=f(3)=-f(-1)
∵當-2≤x<0時,f(x)=2x
∴f(-1)=
1
2

∴a2011=-f(-1)=-
1
2

故答案為:-
1
2
點評:本題考查函數的性質,考查求函數值,解題的關鍵是確定函數y=f(x)是周期為8的周期函數.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知定義在R上的單調遞增奇函數以f(x),若當0≤θ≤
π2
時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的奇函數f(x).當x<0時,f(x)=x2+2x.
(Ⅰ)求函數f(x)的解析式;
(Ⅱ)問:是否存在實數a,b(a≠b),使f(x)在x∈[a,b]時,函數值的集合為[
1
b
1
a
]
?若存在,求出a,b;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:大連二十三中學2011學年度高二年級期末測試試卷數學(理) 題型:選擇題

已知定義在R上的奇函數,滿足,且在區間[0,2]上是增函

數,則(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中數學 來源:2012屆浙江省高二下學期期末考試理科數學試卷 題型:選擇題

已知定義在R上的奇函數,滿足,且在區間[0,1]上是增函

數,若方程在區間上有四個不同的根,則

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知定義在R上的單調遞增奇函數以f(x),若當0≤θ≤數學公式時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案