設(shè)拋物線
的焦點(diǎn)為
,點(diǎn)
,線段
的中點(diǎn)在拋物線上.設(shè)動(dòng)直線
與拋物線相切于點(diǎn)
,且與拋物線的準(zhǔn)線相交于點(diǎn)
,以
為直徑的圓記為圓
.
(1)求
的值;
(2)試判斷圓
與
軸的位置關(guān)系;
(3)在坐標(biāo)平面上是否存在定點(diǎn)
,使得圓
恒過點(diǎn)
?若存在,求出
的坐標(biāo);若不存在,說明理由.
(1)
(2)見解析 (3)存在 ![]()
解析試題分析:
(1)判斷拋物線的焦點(diǎn)位置,得到焦點(diǎn)坐標(biāo),利用中點(diǎn)坐標(biāo)公式得到FA的中點(diǎn)坐標(biāo)帶入拋物線即可求的P的值.
(2)直線與拋物線相切,聯(lián)立直線與拋物線,判別式為0即可得到k,m之間的關(guān)系,可以用k來替代m,得到P點(diǎn)的坐標(biāo),拋物線準(zhǔn)線與直線的方程可得到Q點(diǎn)的坐標(biāo),利用中點(diǎn)坐標(biāo)公式可得到PQ中點(diǎn)坐標(biāo),通過討論k的取值范圍得到中點(diǎn)到x軸距離與圓半徑(PQ為直徑)的大小比較即可判斷圓與x軸的位置關(guān)系.
(3)由(2)可以得到PQ的坐標(biāo)(用k表示),根據(jù)拋物線對(duì)稱性知點(diǎn)
在
軸上,設(shè)點(diǎn)
坐標(biāo)為
,則M點(diǎn)需滿足
,即向量內(nèi)積為0,即可得到M點(diǎn)的坐標(biāo),M點(diǎn)的坐標(biāo)如果為常數(shù)(不含k),即存在這樣的定點(diǎn),如若不然,則不存在.
試題解析:
解:(1)利用拋物線的定義得
,故線段
的中點(diǎn)的坐標(biāo)為
,代入方程得
,解得
。 2分
(2)由(1)得拋物線的方程為
,從而拋物線的準(zhǔn)線方程為
3分
由
得方程
,
由直線與拋物線相切,得
4分
且
,從而
,即
, 5分
由
,解得
, 6分
∴
的中點(diǎn)
的坐標(biāo)為![]()
圓心
到
軸距離
,
∵![]()
8分
∵
,
∴當(dāng)
時(shí),
,圓
與
軸相切;
當(dāng)
時(shí),
,圓
與
軸相交; 9分
(或,以線段
為直徑圓的方程為:![]()
令
得
![]()
∴當(dāng)
時(shí),
,圓
與
軸相切;
當(dāng)
時(shí),
,圓
與
軸相交; 9分
(3)方法一:假設(shè)平面內(nèi)存在定點(diǎn)
滿足條件,由拋物線對(duì)稱性知點(diǎn)
在
軸上,設(shè)點(diǎn)
坐
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知?jiǎng)狱c(diǎn)M(x,y)到直線l:x=4的距離是它到點(diǎn)N(1,0)的距離的2倍.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)過點(diǎn)P(0,3)的直線m與軌跡C交于A,B兩點(diǎn),若A是PB的中點(diǎn),求直線m的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
+
=1(a>b>0),點(diǎn)P(
a,
a)在橢圓上.
(1)求橢圓的離心率;
(2)設(shè)A為橢圓的左頂點(diǎn),O為坐標(biāo)原點(diǎn),若點(diǎn)Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
我們把離心率為e=的雙曲線
(a>0,b>0)稱為黃金雙曲線.如圖,
是雙曲線的實(shí)軸頂點(diǎn),
是虛軸的頂點(diǎn),
是左右焦點(diǎn),
在雙曲線上且過右焦點(diǎn)
,并且
軸,給出以下幾個(gè)說法:![]()
①雙曲線x2-
=1是黃金雙曲線;
②若b2=ac,則該雙曲線是黃金雙曲線;
③如圖,若∠F1B1A2=90°,則該雙曲線是黃金雙曲線;
④如圖,若∠MON=90°,則該雙曲線是黃金雙曲線.
其中正確的是( )
| A.①②④ | B.①②③ | C.②③④ | D.①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓
過點(diǎn)P(1,
),其左、右焦點(diǎn)分別為F1,F2,離心率e=
, M, N是直線x=4上的兩個(gè)動(dòng)點(diǎn),且
·
=0.![]()
(1)求橢圓的方程;
(2)求MN的最小值;
(3)以MN為直徑的圓C是否過定點(diǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為
和
,且|![]()
|=2,
點(diǎn)(1,
)在該橢圓上.
(1)求橢圓C的方程;
(2)過
的直線
與橢圓C相交于A,B兩點(diǎn),若
A
B的面積為
,求以
為圓心且與直線
相切圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)點(diǎn)P是圓x2+y2=4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為P0,且
=![]()
.
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)直線l:y=kx+m(m≠0)與(1)中的軌跡C交于不同的兩點(diǎn)A,B.
若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
=1(a>b>0)的離心率為
,其左、右焦點(diǎn)分別是F1、F2,過點(diǎn)F1的直線l交橢圓C于E、G兩點(diǎn),且△EGF2的周長為4
.
(1)求橢圓C的方程;
(2)若過點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A、B,設(shè)P為橢圓上一點(diǎn),且滿足
+
=t
(O為坐標(biāo)原點(diǎn)),當(dāng)|
-
|<
時(shí),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知△OFQ的面積為S,且
·
=1.設(shè)|
|=c(c≥2),S=
c.若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過點(diǎn)Q,當(dāng)|
|取最小值時(shí),求橢圓的方程.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com