中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數
(1)討論單調區間;
(2)當時,證明:當時,證明:

(1)上是增函數;,
(2)設增,,所以

解析試題分析:(1)根據題意,由于函數,那么可知那么可知當上是增函數;
,,那么根據導數的符號與函數單調性的關系可知,
(2)設根據題意構造函數當當時,設 ,當時則可知函數增,,所以,即命題得證。
考點:導數的運用
點評:主要是考查了導數在研究函數中的運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數在點處的切線方程為,且對任意的恒成立.
(Ⅰ)求函數的解析式;
(Ⅱ)求實數的最小值;
(Ⅲ)求證:).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.設關于x的不等式的解集為且方程的兩實根為.
(1)若,求的關系式;
(2)若,求的范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)函數在區間上是增函數還是減函數?證明你的結論;
(Ⅱ)當時,恒成立,求整數的最大值;
(Ⅲ)試證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若存在實常數,使得函數對其定義域上的任意實數分別滿足:,則稱直線的“隔離直線”.已知為自然對數的底數).
(Ⅰ)求的極值;
(Ⅱ)函數是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的圖象在與軸交點處的切線方程是.
(Ⅰ)求函數的解析式;
(Ⅱ)設函數,若的極值存在,求實數的取值范圍以及當取何值時函數分別取得極大和極小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中為常數,設為自然對數的底數.
(1)當時,求的最大值;
(2)若在區間上的最大值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)求函數的定義域;
(2)判斷并證明函數的奇偶性;
(3)若,試比較的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數是定義在區間上的偶函數,且滿足
(1)求函數的周期;
(2)已知當時,.求使方程上有兩個不相等實根的的取值集合M.
(3)記,表示使方程上有兩個不相等實根的的取值集合,求集合.

查看答案和解析>>

同步練習冊答案