中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
如圖,在平面直角坐標系xOy中,已知橢圓E:的離心率,A1,A2分別是橢圓E的左、右兩個頂點,圓A2的半徑為a,過點A1作圓A2的切線,切點為P,在x軸的上方交橢圓E于點Q.
(1)求直線OP的方程;
(2)求的值;
(3)設a為常數,過點O作兩條互相垂直的直線,分別交橢圓于點B、C,分別交圓A點M、N,記三角形OBC和三角形OMN的面積分別為S1,S2.求S1S2的最大值.

【答案】分析:(1)連結A2P,則A2P⊥A1P,且A2P=a,根據已知條件可判斷△OPA2為正三角形,從而可得OP斜率、直線OP方程;
(2)由(1)可得直線A2P的方程和A1P的方程,聯立兩方程可得P點橫坐標,由離心率可化簡橢圓方程,聯立A1P的方程與橢圓方程可得Q點橫坐標,而=,把各點橫坐標代入上式即可求得比值;
(3)設OM的方程為y=kx(k>0),代入橢圓方程可得B點坐標,由兩點間距離公式可得OB,用代替上面的k可得OC,同理可得OM,ON,根據三角形面積公式可表示出S1•S2,變形后用基本不等式可其最大值;
解答:解:(1)連結A2P,則A2P⊥A1P,且A2P=a,
又A1A2=2a,所以∠A1A2P=60°.
又A2P=A2O,所以△OPA2為正三角形,
所以∠POA2=60°,
所以直線OP的方程為
(2)由(1)知,直線A2P的方程為①,A1P的方程為②,
聯立①②解得
因為,即,所以
故橢圓E的方程為
解得
所以==. 
(3)不妨設OM的方程為y=kx(k>0),
聯立方程組解得
所以
代替上面的k,得
同理可得,
所以
因為
當且僅當k=1時等號成立,
所以S1•S2的最大值為
點評:本題考查直線與圓錐曲線的位置關系、直線方程及圓的方程,考查學生的運算能力,考查學生綜合運用知識分析問題解決問題的能力,能力要求較高.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在△OAB中,點P是線段OB及線段AB延長線所圍成的陰影區域(含邊界)的任意一點,且
OP
=x
OA
+y
OB
則在直角坐標平面內,實數對(x,y)所示的區域在直線y=4的下側部分的面積是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

1、如圖,在直角坐標平面內有一個邊長為a,中心在原點O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數)與正六邊形交于M、N兩點,記△OMN的面積為S,則函數S=f(t)的奇偶性為
偶函數

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在直角坐標平面內有一個邊長為a、中心在原點O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數)與正六邊形交于M、N兩點,記△OMN的面積為S,則函數S=f(t)的奇偶性為(  )
A、偶函數B、奇函數C、不是奇函數,也不是偶函數D、奇偶性與k有關

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•海珠區一模)如圖,在直角坐標平面內,射線OT落在60°的終邊上,任作一條射線OA,OA落在∠xOT內的概率是
1
6
1
6

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在平面直角坐標中,一定長m的線段,其端點AB分別在x軸、y軸上滑動,設點M滿足(λ是大于0,且不等于1的常數).

試問:是否存在定點E、F,使|ME|、|MB|、|MF|成等差數列?若存在,求出E、F的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案